These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38699512)

  • 1. Expressive architectures enhance interpretability of dynamics-based neural population models.
    Sedler AR; Versteeg C; Pandarinath C
    Neuron Behav Data Anal Theory; 2023; 2023():. PubMed ID: 38699512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expressive dynamics models with nonlinear injective readouts enable reliable recovery of latent features from neural activity.
    Versteeg C; Sedler AR; McCart JD; Pandarinath C
    ArXiv; 2023 Sep; ():. PubMed ID: 37744459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the Relationship Between Latent Linear Dynamical Systems and Low-Rank Recurrent Neural Network Models.
    Valente A; Ostojic S; Pillow JW
    Neural Comput; 2022 Aug; 34(9):1871-1892. PubMed ID: 35896161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Considerations in using recurrent neural networks to probe neural dynamics.
    Kao JC
    J Neurophysiol; 2019 Dec; 122(6):2504-2521. PubMed ID: 31619125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstructing Genetic Regulatory Networks Using Two-Step Algorithms with the Differential Equation Models of Neural Networks.
    Chen CK
    Interdiscip Sci; 2018 Dec; 10(4):823-835. PubMed ID: 28748400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network capacity analysis for latent attractor computation.
    Doboli S; Minai AA
    Network; 2003 May; 14(2):273-302. PubMed ID: 12790185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics and Information Import in Recurrent Neural Networks.
    Metzner C; Krauss P
    Front Comput Neurosci; 2022; 16():876315. PubMed ID: 35573264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse engineering recurrent networks for sentiment classification reveals line attractor dynamics.
    Maheswaranathan N; Williams AH; Golub MD; Ganguli S; Sussillo D
    Adv Neural Inf Process Syst; 2019 Dec; 32():15696-15705. PubMed ID: 32782423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring population dynamics in macaque cortex.
    Meghanath G; Jimenez B; Makin JG
    J Neural Eng; 2023 Nov; 20(5):. PubMed ID: 37875104
    [No Abstract]   [Full Text] [Related]  

  • 10. Learning With Interpretable Structure From Gated RNN.
    Hou BJ; Zhou ZH
    IEEE Trans Neural Netw Learn Syst; 2020 Jul; 31(7):2267-2279. PubMed ID: 32071002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements.
    Durstewitz D
    PLoS Comput Biol; 2017 Jun; 13(6):e1005542. PubMed ID: 28574992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unsupervised learning of stationary and switching dynamical system models from Poisson observations.
    Song CY; Shanechi MM
    J Neural Eng; 2023 Dec; 20(6):. PubMed ID: 38083862
    [No Abstract]   [Full Text] [Related]  

  • 13. Prediction of Time Series Gene Expression and Structural Analysis of Gene Regulatory Networks Using Recurrent Neural Networks.
    Monti M; Fiorentino J; Milanetti E; Gosti G; Tartaglia GG
    Entropy (Basel); 2022 Jan; 24(2):. PubMed ID: 35205437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing computational system dynamics from neural data with recurrent neural networks.
    Durstewitz D; Koppe G; Thurm MI
    Nat Rev Neurosci; 2023 Nov; 24(11):693-710. PubMed ID: 37794121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universality and individuality in neural dynamics across large populations of recurrent networks.
    Maheswaranathan N; Williams AH; Golub MD; Ganguli S; Sussillo D
    Adv Neural Inf Process Syst; 2019 Dec; 2019():15629-15641. PubMed ID: 32782422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Representation Learning for Dynamic Functional Connectivities via Variational Dynamic Graph Latent Variable Models.
    Huang Y; Yu Z
    Entropy (Basel); 2022 Jan; 24(2):. PubMed ID: 35205448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning dynamical systems by recurrent neural networks from orbits.
    Kimura M; Nakano R
    Neural Netw; 1998 Dec; 11(9):1589-1599. PubMed ID: 12662730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning Brain Dynamics With Coupled Low-Dimensional Nonlinear Oscillators and Deep Recurrent Networks.
    Abrevaya G; Dumas G; Aravkin AY; Zheng P; Gagnon-Audet JC; Kozloski J; Polosecki P; Lajoie G; Cox D; Dawson SP; Cecchi G; Rish I
    Neural Comput; 2021 Jul; 33(8):2087-2127. PubMed ID: 34310676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CiwGAN and fiwGAN: Encoding information in acoustic data to model lexical learning with Generative Adversarial Networks.
    Beguš G
    Neural Netw; 2021 Jul; 139():305-325. PubMed ID: 33873122
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.