These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38699607)

  • 1. Optimizing feature subset for schizophrenia detection using multichannel EEG signals and rough set theory.
    Srinivasan S; Johnson SD
    Cogn Neurodyn; 2024 Apr; 18(2):431-446. PubMed ID: 38699607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A self-learned decomposition and classification model for schizophrenia diagnosis.
    Khare SK; Bajaj V
    Comput Methods Programs Biomed; 2021 Nov; 211():106450. PubMed ID: 34619600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Computerized Method for Automatic Detection of Schizophrenia Using EEG Signals.
    Siuly S; Khare SK; Bajaj V; Wang H; Zhang Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Nov; 28(11):2390-2400. PubMed ID: 32897863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid decision support system for automatic detection of Schizophrenia using EEG signals.
    Khare SK; Bajaj V
    Comput Biol Med; 2022 Feb; 141():105028. PubMed ID: 34836626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals.
    Hu J
    Front Comput Neurosci; 2017; 11():72. PubMed ID: 28824409
    [No Abstract]   [Full Text] [Related]  

  • 6. Classification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in Electroencephalogram Signal.
    Rezaei E; Shalbaf A
    Basic Clin Neurosci; 2023; 14(2):213-224. PubMed ID: 38107527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of schizophrenia using hybrid of deep learning and brain effective connectivity image from electroencephalogram signal.
    Bagherzadeh S; Shahabi MS; Shalbaf A
    Comput Biol Med; 2022 Jul; 146():105570. PubMed ID: 35504218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An automated detection of epileptic seizures EEG using CNN classifier based on feature fusion with high accuracy.
    Chen W; Wang Y; Ren Y; Jiang H; Du G; Zhang J; Li J
    BMC Med Inform Decis Mak; 2023 May; 23(1):96. PubMed ID: 37217878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An optimized design of seizure detection system using joint feature extraction of multichannel EEG signals.
    Torse D; Desai V; Khanai R
    J Biomed Res; 2019 Oct; 34(3):191-204. PubMed ID: 32561699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals.
    Shalbaf A; Bagherzadeh S; Maghsoudi A
    Phys Eng Sci Med; 2020 Dec; 43(4):1229-1239. PubMed ID: 32926393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SchizoNET: a robust and accurate Margenau-Hill time-frequency distribution based deep neural network model for schizophrenia detection using EEG signals.
    Khare SK; Bajaj V; Acharya UR
    Physiol Meas; 2023 Mar; 44(3):. PubMed ID: 36787641
    [No Abstract]   [Full Text] [Related]  

  • 12. Fusion of pattern-based and statistical features for Schizophrenia detection from EEG signals.
    Agarwal M; Singhal A
    Med Eng Phys; 2023 Feb; 112():103949. PubMed ID: 36842772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SchizoGoogLeNet: The GoogLeNet-Based Deep Feature Extraction Design for Automatic Detection of Schizophrenia.
    Siuly S; Li Y; Wen P; Alcin OF
    Comput Intell Neurosci; 2022; 2022():1992596. PubMed ID: 36120676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A New Method Based on CEEMD Combined With Iterative Feature Reduction for Aided Diagnosis of Epileptic EEG.
    Zhou M; Bian K; Hu F; Lai W
    Front Bioeng Biotechnol; 2020; 8():669. PubMed ID: 32695761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer-aided diagnosis of autism spectrum disorder from EEG signals using deep learning with FAWT and multiscale permutation entropy features.
    Chawla P; Rana SB; Kaur H; Singh K
    Proc Inst Mech Eng H; 2023 Feb; 237(2):282-294. PubMed ID: 36515392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grasshopper optimization algorithm-based approach for the optimization of ensemble classifier and feature selection to classify epileptic EEG signals.
    Singh G; Singh B; Kaur M
    Med Biol Eng Comput; 2019 Jun; 57(6):1323-1339. PubMed ID: 30756231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG Signals Feature Extraction Based on DWT and EMD Combined with Approximate Entropy.
    Ji N; Ma L; Dong H; Zhang X
    Brain Sci; 2019 Aug; 9(8):. PubMed ID: 31416258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An effective hybrid feature selection using entropy weight method for automatic sleep staging.
    Wang W; Li J; Fang Y; Zheng Y; You F
    Physiol Meas; 2023 Oct; 44(10):. PubMed ID: 37783214
    [No Abstract]   [Full Text] [Related]  

  • 19. Multifuse multilayer multikernel RVFLN+ of process modes decomposition and approximate entropy data from iEEG/sEEG signals for epileptic seizure recognition.
    Rout SK; Sahani M; Dash PK; Biswal PK
    Comput Biol Med; 2021 May; 132():104299. PubMed ID: 33711557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research on Ocular Artifacts Removal from Single-Channel Electroencephalogram Signals in Obstructive Sleep Apnea Patients Based on Support Vector Machine, Improved Variational Mode Decomposition, and Second-Order Blind Identification.
    Xiong X; Sun Z; Wang A; Zhang J; Zhang J; Wang C; He J
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.