BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38699612)

  • 1. Spectral analysis and Bi-LSTM deep network-based approach in detection of mild cognitive impairment from electroencephalography signals.
    Said A; Göker H
    Cogn Neurodyn; 2024 Apr; 18(2):597-614. PubMed ID: 38699612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic detection of Parkinson's disease from power spectral density of electroencephalography (EEG) signals using deep learning model.
    Göker H
    Phys Eng Sci Med; 2023 Sep; 46(3):1163-1174. PubMed ID: 37245195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A holo-spectral EEG analysis provides an early detection of cognitive decline and predicts the progression to Alzheimer's disease.
    Chu KT; Lei WC; Wu MH; Fuh JL; Wang SJ; French IT; Chang WS; Chang CF; Huang NE; Liang WK; Juan CH
    Front Aging Neurosci; 2023; 15():1195424. PubMed ID: 37674782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroencephalography-based classification of Alzheimer's disease spectrum during computer-based cognitive testing.
    Kim SK; Kim H; Kim SH; Kim JB; Kim L
    Sci Rep; 2024 Mar; 14(1):5252. PubMed ID: 38438453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved I-FAST system for the diagnosis of Alzheimer's disease from unprocessed electroencephalograms by using robust invariant features.
    Buscema M; Vernieri F; Massini G; Scrascia F; Breda M; Rossini PM; Grossi E
    Artif Intell Med; 2015 May; 64(1):59-74. PubMed ID: 25997573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A New Framework for Automatic Detection of Patients With Mild Cognitive Impairment Using Resting-State EEG Signals.
    Siuly S; Alcin OF; Kabir E; Sengur A; Wang H; Zhang Y; Whittaker F
    IEEE Trans Neural Syst Rehabil Eng; 2020 Sep; 28(9):1966-1976. PubMed ID: 32746328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Detection Tool for Mild Cognitive Impairment Patients Based on Eye Movement and Electroencephalogram.
    Jiang J; Yan Z; Sheng C; Wang M; Guan Q; Yu Z; Han Y; Jiang J
    J Alzheimers Dis; 2019; 72(2):389-399. PubMed ID: 31594231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrimination of stroke-related mild cognitive impairment and vascular dementia using EEG signal analysis.
    Al-Qazzaz NK; Ali SHBM; Ahmad SA; Islam MS; Escudero J
    Med Biol Eng Comput; 2018 Jan; 56(1):137-157. PubMed ID: 29119540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel method for diagnosing Alzheimer's disease using deep pyramid CNN based on EEG signals.
    Xia W; Zhang R; Zhang X; Usman M
    Heliyon; 2023 Apr; 9(4):e14858. PubMed ID: 37025794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning of resting-state electroencephalogram signals for three-class classification of Alzheimer's disease, mild cognitive impairment and healthy ageing.
    Huggins CJ; Escudero J; Parra MA; Scally B; Anghinah R; Vitória Lacerda De Araújo A; Basile LF; Abasolo D
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34044374
    [No Abstract]   [Full Text] [Related]  

  • 11. Sleep EEG-Based Approach to Detect Mild Cognitive Impairment.
    Geng D; Wang C; Fu Z; Zhang Y; Yang K; An H
    Front Aging Neurosci; 2022; 14():865558. PubMed ID: 35493944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resting state EEG biomarkers of cognitive decline associated with Alzheimer's disease and mild cognitive impairment.
    Meghdadi AH; Stevanović Karić M; McConnell M; Rupp G; Richard C; Hamilton J; Salat D; Berka C
    PLoS One; 2021; 16(2):e0244180. PubMed ID: 33544703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition of Consumer Preference by Analysis and Classification EEG Signals.
    Aldayel M; Ykhlef M; Al-Nafjan A
    Front Hum Neurosci; 2020; 14():604639. PubMed ID: 33519402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning for Alzheimer's Disease Classification using Texture Features.
    So JH; Madusanka N; Choi HK; Choi BK; Park HG
    Curr Med Imaging Rev; 2019; 15(7):689-698. PubMed ID: 32008517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
    Spasov S; Passamonti L; Duggento A; Liò P; Toschi N;
    Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of EEG Signals by Spectral Peak Methods and Statistical Correlation for Mental State Discrimination Induced by Arithmetic Tasks.
    Coman DA; Ionita S; Lita I
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying Individuals With Mild Cognitive Impairment Using Working Memory-Induced Intra-Subject Variability of Resting-State EEGs.
    Trinh TT; Tsai CF; Hsiao YT; Lee CY; Wu CT; Liu YH
    Front Comput Neurosci; 2021; 15():700467. PubMed ID: 34421565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic Diagnosis of Mild Cognitive Impairment Based on Spectral, Functional Connectivity, and Nonlinear EEG-Based Features.
    Movahed RA; Rezaeian M
    Comput Math Methods Med; 2022; 2022():2014001. PubMed ID: 35991131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An attention-based deep learning approach for the classification of subjective cognitive decline and mild cognitive impairment using resting-state EEG.
    Sibilano E; Brunetti A; Buongiorno D; Lassi M; Grippo A; Bessi V; Micera S; Mazzoni A; Bevilacqua V
    J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36745929
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.