These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38699630)

  • 1. Neural dynamics of robust legged robots.
    Rush ER; Heckman C; Jayaram K; Humbert JS
    Front Robot AI; 2024; 11():1324404. PubMed ID: 38699630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing and designing a leg shape to increase robustness of a running robot on rough terrain.
    Gaathon A; Degani A
    Bioinspir Biomim; 2022 Nov; 17(6):. PubMed ID: 36270611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs.
    Spröwitz AT; Tuleu A; Ajallooeian M; Vespignani M; Möckel R; Eckert P; D'Haene M; Degrave J; Nordmann A; Schrauwen B; Steil J; Ijspeert AJ
    Front Robot AI; 2018; 5():67. PubMed ID: 33500946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid Bipedal Locomotion Based on Reinforcement Learning and Heuristics.
    Wang Z; Wei W; Xie A; Zhang Y; Wu J; Zhu Q
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid learning mechanisms under a neural control network for various walking speed generation of a quadruped robot.
    Zhang Y; Thor M; Dilokthanakul N; Dai Z; Manoonpong P
    Neural Netw; 2023 Oct; 167():292-308. PubMed ID: 37666187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contact feedback helps snake robots propel against uneven terrain using vertical bending.
    Fu Q; Li C
    Bioinspir Biomim; 2023 Aug; 18(5):. PubMed ID: 37433307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generic Neural Locomotion Control Framework for Legged Robots.
    Thor M; Kulvicius T; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2021 Sep; 32(9):4013-4025. PubMed ID: 32833657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning robust perceptive locomotion for quadrupedal robots in the wild.
    Miki T; Lee J; Hwangbo J; Wellhausen L; Koltun V; Hutter M
    Sci Robot; 2022 Jan; 7(62):eabk2822. PubMed ID: 35044798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.
    Manoonpong P; Parlitz U; Wörgötter F
    Front Neural Circuits; 2013; 7():12. PubMed ID: 23408775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achieving natural behavior in a robot using neurally inspired hierarchical perceptual control.
    Barter JW; Yin HH
    iScience; 2021 Sep; 24(9):102948. PubMed ID: 34522850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust and reusable self-organized locomotion of legged robots under adaptive physical and neural communications.
    Sun T; Dai Z; Manoonpong P
    Front Neural Circuits; 2023; 17():1111285. PubMed ID: 37063383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reward-Modulated Hebbian Plasticity as Leverage for Partially Embodied Control in Compliant Robotics.
    Burms J; Caluwaerts K; Dambre J
    Front Neurorobot; 2015; 9():9. PubMed ID: 26347645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning quadrupedal locomotion over challenging terrain.
    Lee J; Hwangbo J; Wellhausen L; Koltun V; Hutter M
    Sci Robot; 2020 Oct; 5(47):. PubMed ID: 33087482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait and locomotion analysis of a soft-hybrid multi-legged modular miniature robot.
    Mahkam N; Özcan O
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34492650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot.
    Grinke E; Tetzlaff C; Wörgötter F; Manoonpong P
    Front Neurorobot; 2015; 9():11. PubMed ID: 26528176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Robust Balance-Control Framework for the Terrain-Blind Bipedal Walking of a Humanoid Robot on Unknown and Uneven Terrain.
    Joe HM; Oh JH
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Fall Recovery Control for Legged Robots via Reinforcement Learning.
    Li S; Pang Y; Bai P; Hu S; Wang L; Wang G
    Biomimetics (Basel); 2024 Mar; 9(4):. PubMed ID: 38667204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A gecko-inspired robot with CPG-based neural control for locomotion and body height adaptation.
    Shao D; Wang Z; Ji A; Dai Z; Manoonpong P
    Bioinspir Biomim; 2022 Apr; 17(3):. PubMed ID: 35236786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining Evolutionary and Adaptive Control Strategies for Quadruped Robotic Locomotion.
    Massi E; Vannucci L; Albanese U; Capolei MC; Vandesompele A; Urbain G; Sabatini AM; Dambre J; Laschi C; Tolu S; Falotico E
    Front Neurorobot; 2019; 13():71. PubMed ID: 31555118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.