These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38699809)

  • 1. Wavelength-specific negatively phototactic responses of the burrowing mayfly larvae Ephoron virgo.
    Mészáros Á; Kriska G; Egri Á
    J Exp Biol; 2024 May; 227(10):. PubMed ID: 38699809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral sensitivity transition in the compound eyes of a twilight-swarming mayfly and its visual ecological implications.
    Egri Á; Mészáros Á; Kriska G
    Proc Biol Sci; 2022 Apr; 289(1973):20220318. PubMed ID: 35473376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavelength-specific thresholds of artificially reared Japanese eel Anguilla japonica larvae determined from negative-phototactic behaviours.
    Matsuda K; Kamoshida M; Masuda Y
    J Fish Biol; 2019 Oct; 95(4):1040-1045. PubMed ID: 31297817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method to improve the survival of night-swarming mayflies near bridges in areas of distracting light pollution.
    Egri Á; Száz D; Farkas A; Pereszlényi Á; Horváth G; Kriska G
    R Soc Open Sci; 2017 Nov; 4(11):171166. PubMed ID: 29291103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lamp-lit bridges as dual light-traps for the night-swarming mayfly, Ephoron virgo: interaction of polarized and unpolarized light pollution.
    Szaz D; Horvath G; Barta A; Robertson BA; Farkas A; Egri A; Tarjanyi N; Racz G; Kriska G
    PLoS One; 2015; 10(3):e0121194. PubMed ID: 25815748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mayflies are least attracted to vertical polarization: A polarotactic reaction helping to avoid unsuitable habitats.
    Farkas A; Száz D; Egri Á; Barta A; Mészáros Á; Hegedüs R; Horváth G; Kriska G
    Physiol Behav; 2016 Sep; 163():219-227. PubMed ID: 27178399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can Acropora tenuis larvae attract native Symbiodiniaceae cells by green fluorescence at the initial establishment of symbiosis?
    Yamashita H; Koike K; Shinzato C; Jimbo M; Suzuki G
    PLoS One; 2021; 16(6):e0252514. PubMed ID: 34061893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How does the water springtail optically locate suitable habitats? Spectral sensitivity of phototaxis and polarotaxis in
    Egri Á; Kriska G
    J Exp Biol; 2019 Apr; 222(Pt 9):. PubMed ID: 31015288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zebrafish larvae show negative phototaxis to near-infrared light.
    Hartmann S; Vogt R; Kunze J; Rauschert A; Kuhnert KD; Wanzenböck J; Lamatsch DK; Witte K
    PLoS One; 2018; 13(11):e0207264. PubMed ID: 30485324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In search of the spectral composition of an effective light trap for the mushroom pest Lycoriella ingenua (Diptera: Sciaridae).
    Kecskeméti S; Geösel A; Fail J; Egri Á
    Sci Rep; 2021 Jun; 11(1):12770. PubMed ID: 34140606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complexity and plasticity in honey bee phototactic behaviour.
    Nouvian M; Galizia CG
    Sci Rep; 2020 May; 10(1):7872. PubMed ID: 32398687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband Photoreceptors Are Involved in Violet Light Preference in the Parasitoid Fly Exorista Japonica.
    Tokushima Y; Uehara T; Yamaguchi T; Arikawa K; Kainoh Y; Shimoda M
    PLoS One; 2016; 11(8):e0160441. PubMed ID: 27532635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergent Phototactic Responses of Cyanobacteria under Complex Light Regimes.
    Chau RM; Bhaya D; Huang KC
    mBio; 2017 Mar; 8(2):. PubMed ID: 28270586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Different Wavelengths of Artificial Light at Night on Phototaxis in Aquatic Insects.
    Kühne JL; van Grunsven RHA; Jechow A; Hölker F
    Integr Comp Biol; 2021 Oct; 61(3):1182-1190. PubMed ID: 34180520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new species of Ephoron Williamson, 1802 (Ephemeroptera: Polymitarcyidae) from Thailand.
    Techakijvej C; Sareein N; Hwang JM; Bae YJ; Phalaraksh C
    Zootaxa; 2021 Jun; 4985(3):392402. PubMed ID: 34186801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contaminated sediments and bioassay responses of three macroinvertebrates, the midge larva Chironomus riparius, the water louse Asellus aquaticus and the mayfly nymph Ephoron virgo.
    De Lange HJ; De Haas EM; Maas H; Peeters ET
    Chemosphere; 2005 Dec; 61(11):1700-9. PubMed ID: 15885739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of photobehaviour in sponge larval dispersal and settlement.
    Whalan S
    PLoS One; 2023; 18(7):e0287989. PubMed ID: 37428784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light Spot-Based Assay for Analysis of Drosophila Larval Phototaxis.
    Sun Y; Zhou P; Zhao Q; Gong Z
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The expression of three opsin genes and phototactic behavior of Spodoptera exigua (Lepidoptera: Noctuidae): Evidence for visual function of opsin in phototaxis.
    Liu YJ; Yan S; Shen ZJ; Li Z; Zhang XF; Liu XM; Zhang QW; Liu XX
    Insect Biochem Mol Biol; 2018 May; 96():27-35. PubMed ID: 29625217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in insect phototaxis and application to pest management: a review.
    Kim KN; Huang QY; Lei CL
    Pest Manag Sci; 2019 Dec; 75(12):3135-3143. PubMed ID: 31251458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.