These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38699906)

  • 1. Use of spectroscopic process analytical technology for rapid quality evaluation during preparation of CHO cell culture media.
    Ou J; Cui W; Zhao Y; Tang Y; Williams A; Wasalathanthri D; Xu J; Lee J; Borys MC; Khetan A
    Biotechnol Prog; 2024; 40(5):e3477. PubMed ID: 38699906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-omics profiling of a CHO cell culture system unravels the effect of culture pH on cell growth, antibody titer, and product quality.
    Lee AP; Kok YJ; Lakshmanan M; Leong D; Zheng L; Lim HL; Chen S; Mak SY; Ang KS; Templeton N; Salim T; Wei X; Gifford E; Tan AH; Bi X; Ng SK; Lee DY; Ling WLW; Ho YS
    Biotechnol Bioeng; 2021 Nov; 118(11):4305-4316. PubMed ID: 34289087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time monitoring of antibody glycosylation site occupancy by in situ Raman spectroscopy during bioreactor CHO cell cultures.
    Li MY; Ebel B; Paris C; Chauchard F; Guedon E; Marc A
    Biotechnol Prog; 2018 Mar; 34(2):486-493. PubMed ID: 29314747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemometrics and in-line near infrared spectroscopic monitoring of a biopharmaceutical Chinese hamster ovary cell culture: prediction of multiple cultivation variables.
    Clavaud M; Roggo Y; Von Daeniken R; Liebler A; Schwabe JO
    Talanta; 2013 Jul; 111():28-38. PubMed ID: 23622522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning monoclonal antibody galactosylation using Raman spectroscopy-controlled lactic acid feeding.
    W Eyster T; Talwar S; Fernandez J; Foster S; Hayes J; Allen R; Reidinger S; Wan B; Ji X; Aon J; Patel P; Ritz DB
    Biotechnol Prog; 2021 Jan; 37(1):e3085. PubMed ID: 32975043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman-based dynamic feeding strategies using real-time glucose concentration monitoring system during adalimumab producing CHO cell cultivation.
    Domján J; Fricska A; Madarász L; Gyürkés M; Köte Á; Farkas A; Vass P; Fehér C; Horváth B; Könczöl K; Pataki H; Nagy ZK; Marosi GJ; Hirsch E
    Biotechnol Prog; 2020 Nov; 36(6):e3052. PubMed ID: 32692473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared and two-dimensional fluorescence spectroscopy monitoring of monoclonal antibody fermentation media quality: aged media decreases cell growth.
    Hakemeyer C; Strauss U; Werz S; Folque F; Menezes JC
    Biotechnol J; 2013 Jul; 8(7):835-46. PubMed ID: 23589471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies to improve CHO cell culture performance: Targeted deletion of amino acid catabolism and apoptosis genes paired with growth inhibitor supplementation.
    Lam C; Sargon A; Diaz C; Lai Z; Sangaraju D; Yuk I; Barnard G; Misaghi S
    Biotechnol Prog; 2024; 40(5):e3471. PubMed ID: 38629737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture.
    Berry BN; Dobrowsky TM; Timson RC; Kshirsagar R; Ryll T; Wiltberger K
    Biotechnol Prog; 2016; 32(1):224-34. PubMed ID: 26587969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of hydrolysates on monoclonal antibody productivity, purification and quality in Chinese hamster ovary cells.
    Ho SC; Nian R; Woen S; Chng J; Zhang P; Yang Y
    J Biosci Bioeng; 2016 Oct; 122(4):499-506. PubMed ID: 27067279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential gene expression of a feed-spiked super-producing CHO cell line.
    Reinhart D; Damjanovic L; Castan A; Ernst W; Kunert R
    J Biotechnol; 2018 Nov; 285():23-37. PubMed ID: 30157452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the interactions of critical scale-up parameters (pH, pO
    Brunner M; Fricke J; Kroll P; Herwig C
    Bioprocess Biosyst Eng; 2017 Feb; 40(2):251-263. PubMed ID: 27752770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving culture performance and antibody production in CHO cell culture processes by reducing the Warburg effect.
    Buchsteiner M; Quek LE; Gray P; Nielsen LK
    Biotechnol Bioeng; 2018 Sep; 115(9):2315-2327. PubMed ID: 29704441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S-Sulfocysteine simplifies fed-batch processes and increases the CHO specific productivity via anti-oxidant activity.
    Hecklau C; Pering S; Seibel R; Schnellbaecher A; Wehsling M; Eichhorn T; Hagen Jv; Zimmer A
    J Biotechnol; 2016 Jan; 218():53-63. PubMed ID: 26654938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Raman spectroscopy in monoclonal antibody producing continuous systems for downstream process intensification.
    Yilmaz D; Mehdizadeh H; Navarro D; Shehzad A; O'Connor M; McCormick P
    Biotechnol Prog; 2020 May; 36(3):e2947. PubMed ID: 31837253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multi-pronged investigation into the effect of glucose starvation and culture duration on fed-batch CHO cell culture.
    Fan Y; Jimenez Del Val I; Müller C; Lund AM; Sen JW; Rasmussen SK; Kontoravdi C; Baycin-Hizal D; Betenbaugh MJ; Weilguny D; Andersen MR
    Biotechnol Bioeng; 2015 Oct; 112(10):2172-84. PubMed ID: 25899530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Process intensification in fed-batch production bioreactors using non-perfusion seed cultures.
    Yongky A; Xu J; Tian J; Oliveira C; Zhao J; McFarland K; Borys MC; Li ZJ
    MAbs; 2019; 11(8):1502-1514. PubMed ID: 31379298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and manufacturability assessment of chemically-defined medium for the production of protein therapeutics in CHO cells.
    Ling WL; Bai Y; Cheng C; Padawer I; Wu C
    Biotechnol Prog; 2015; 31(5):1163-71. PubMed ID: 26013818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective temperature shift strategy development and scale confirmation for simultaneous optimization of protein productivity and quality in Chinese hamster ovary cells.
    McHugh KP; Xu J; Aron KL; Borys MC; Li ZJ
    Biotechnol Prog; 2020 May; 36(3):e2959. PubMed ID: 31930722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures.
    Du Z; Treiber D; McCarter JD; Fomina-Yadlin D; Saleem RA; McCoy RE; Zhang Y; Tharmalingam T; Leith M; Follstad BD; Dell B; Grisim B; Zupke C; Heath C; Morris AE; Reddy P
    Biotechnol Bioeng; 2015 Jan; 112(1):141-55. PubMed ID: 25042542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.