These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38700233)

  • 41. A nanoporous MXene film enables flexible supercapacitors with high energy storage.
    Fan Z; Wang Y; Xie Z; Xu X; Yuan Y; Cheng Z; Liu Y
    Nanoscale; 2018 May; 10(20):9642-9652. PubMed ID: 29756628
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Holey graphene frameworks for highly efficient capacitive energy storage.
    Xu Y; Lin Z; Zhong X; Huang X; Weiss NO; Huang Y; Duan X
    Nat Commun; 2014 Aug; 5():4554. PubMed ID: 25105994
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recent Advances on Nitrogen-Doped Porous Carbons Towards Electrochemical Supercapacitor Applications.
    Komal Zafar H; Zainab S; Masood M; Sohail M; Shoaib Ahmad Shah S; Karim MR; O'Mullane A; Ostrikov KK; Will G; Wahab MA
    Chem Rec; 2024 Jan; 24(1):e202300161. PubMed ID: 37582638
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultrathin Hierarchical Porous Carbon Nanosheets for High-Performance Supercapacitors and Redox Electrolyte Energy Storage.
    Jayaramulu K; Dubal DP; Nagar B; Ranc V; Tomanec O; Petr M; Datta KKR; Zboril R; Gómez-Romero P; Fischer RA
    Adv Mater; 2018 Apr; 30(15):e1705789. PubMed ID: 29516561
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3D CNTs/graphene network conductive substrate supported MOFs-derived CoZnNiS nanosheet arrays for ultra-high volumetric/gravimetric energy density hybrid supercapacitor.
    Liu Y; Xin N; Yang Q; Shi W
    J Colloid Interface Sci; 2021 Feb; 583():288-298. PubMed ID: 33007585
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In Situ Fabrication of Hierarchical CuO@CoNi-LDH Composite Structures for High-Performance Supercapacitors.
    Wu Q; Li F; Sheng H; Qi Y; Yuan J; Bi H; Li W; Xie E; Lan W
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38669688
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Defect Rich Hierarchical Porous Carbon for High Power Supercapacitors.
    Cai P; Zou K; Deng X; Wang B; Zou G; Hou H; Ji X
    Front Chem; 2020; 8():43. PubMed ID: 32117871
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 3D Printing of NiCoP/Ti
    Yu L; Li W; Wei C; Yang Q; Shao Y; Sun J
    Nanomicro Lett; 2020 Jul; 12(1):143. PubMed ID: 34138137
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Acid-Assisted Exfoliation toward Metallic Sub-nanopore TaS
    Wu J; Peng J; Yu Z; Zhou Y; Guo Y; Li Z; Lin Y; Ruan K; Wu C; Xie Y
    J Am Chem Soc; 2018 Jan; 140(1):493-498. PubMed ID: 29202228
    [TBL] [Abstract][Full Text] [Related]  

  • 50. All-in-One Compact Architecture toward Wearable All-Solid-State, High-Volumetric-Energy-Density Supercapacitors.
    Gao T; Zhou Z; Yu J; Cao D; Wang G; Ding B; Li Y
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23834-23841. PubMed ID: 29956918
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultrathin nickel hydroxide on carbon coated 3D-porous copper structures for high performance supercapacitors.
    Kang KN; Kim IH; Ramadoss A; Kim SI; Yoon JC; Jang JH
    Phys Chem Chem Phys; 2018 Jan; 20(2):719-727. PubMed ID: 29231217
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Graphene supercapacitor with both high power and energy density.
    Yang H; Kannappan S; Pandian AS; Jang JH; Lee YS; Lu W
    Nanotechnology; 2017 Nov; 28(44):445401. PubMed ID: 28854156
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel Insight into the Concept of Favorable Combination of Electrodes in High Voltage Supercapacitors: Toward Ultrahigh Volumetric Energy Density and Outstanding Rate Capability.
    Elsa G; Vijayakumar M; Navaneethan R; Karthik M
    Glob Chall; 2022 Apr; 6(4):2100139. PubMed ID: 35433029
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modified MXene/Holey Graphene Films for Advanced Supercapacitor Electrodes with Superior Energy Storage.
    Fan Z; Wang Y; Xie Z; Wang D; Yuan Y; Kang H; Su B; Cheng Z; Liu Y
    Adv Sci (Weinh); 2018 Oct; 5(10):1800750. PubMed ID: 30356956
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tunable Capacitive Behavior in Metallopolymer-based Electrochromic Thin Film Supercapacitors.
    Mukkatt I; Mohanachandran AP; Nirmala A; Patra D; Sukumaran PA; Pillai RS; Rakhi RB; Shankar S; Ajayaghosh A
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):31900-31910. PubMed ID: 35791964
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?
    Lian C; Liu H; Henderson D; Wu J
    J Phys Condens Matter; 2016 Oct; 28(41):414005. PubMed ID: 27546561
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Facile Synthesis of Nitrogen-Doped Graphene Quantum Dots/MnCO
    Liu D; Kim S; Choi WM
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399135
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Poly (Ionic Liquid)-Metal Organic Framework-Derived Nanoporous Carbon Membranes: Facile Fabrication and Ultrahigh Areal Capacitance.
    Shi Y; Long W; Wang Y; He X; Lv B; Zuo H; Li X; Liao Y; Zhang W
    Macromol Rapid Commun; 2023 Oct; 44(20):e2300309. PubMed ID: 37501566
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.
    Sarker AK; Hong JD
    Langmuir; 2012 Aug; 28(34):12637-46. PubMed ID: 22866750
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Carbons and electrolytes for advanced supercapacitors.
    Béguin F; Presser V; Balducci A; Frackowiak E
    Adv Mater; 2014 Apr; 26(14):2219-51, 2283. PubMed ID: 24497347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.