These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 38700253)
1. Machine learning to predict notes for chart review in the oncology setting: a proof of concept strategy for improving clinician note-writing. Jiang S; Lam BD; Agrawal M; Shen S; Kurtzman N; Horng S; Karger DR; Sontag D J Am Med Inform Assoc; 2024 Jun; 31(7):1578-1582. PubMed ID: 38700253 [TBL] [Abstract][Full Text] [Related]
2. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach. Weng WH; Wagholikar KB; McCray AT; Szolovits P; Chueh HC BMC Med Inform Decis Mak; 2017 Dec; 17(1):155. PubMed ID: 29191207 [TBL] [Abstract][Full Text] [Related]
3. Classifying clinical work settings using EHR audit logs: a machine learning approach. Kim S; Lou SS; Baratta LR; Kannampallil T Am J Manag Care; 2023 Jan; 29(1):e24-e30. PubMed ID: 36716161 [TBL] [Abstract][Full Text] [Related]
4. A Scalable and Extensible Logical Data Model of Electronic Health Record Audit Logs for Temporal Data Mining (RNteract): Model Conceptualization and Formulation. Tiase VL; Sward KA; Facelli JC JMIR Nurs; 2024 Jun; 7():e55793. PubMed ID: 38913994 [TBL] [Abstract][Full Text] [Related]
5. Classifying social determinants of health from unstructured electronic health records using deep learning-based natural language processing. Han S; Zhang RF; Shi L; Richie R; Liu H; Tseng A; Quan W; Ryan N; Brent D; Tsui FR J Biomed Inform; 2022 Mar; 127():103984. PubMed ID: 35007754 [TBL] [Abstract][Full Text] [Related]
6. Comparison of 2 Natural Language Processing Methods for Identification of Bleeding Among Critically Ill Patients. Taggart M; Chapman WW; Steinberg BA; Ruckel S; Pregenzer-Wenzler A; Du Y; Ferraro J; Bucher BT; Lloyd-Jones DM; Rondina MT; Shah RU JAMA Netw Open; 2018 Oct; 1(6):e183451. PubMed ID: 30646240 [TBL] [Abstract][Full Text] [Related]
7. A clinical text classification paradigm using weak supervision and deep representation. Wang Y; Sohn S; Liu S; Shen F; Wang L; Atkinson EJ; Amin S; Liu H BMC Med Inform Decis Mak; 2019 Jan; 19(1):1. PubMed ID: 30616584 [TBL] [Abstract][Full Text] [Related]
8. Characterizing styles of clinical note production and relationship to clinical work hours among first-year residents. Gong JJ; Soleimani H; Murray SG; Adler-Milstein J J Am Med Inform Assoc; 2021 Dec; 29(1):120-127. PubMed ID: 34963142 [TBL] [Abstract][Full Text] [Related]
9. Using Machine Learning to Capture Quality Metrics from Natural Language: A Case Study of Diabetic Eye Exams. Fong A; Scoulios N; Blumenthal HJ; Anderson RE Methods Inf Med; 2021 Sep; 60(3-04):110-115. PubMed ID: 34598298 [TBL] [Abstract][Full Text] [Related]
10. Natural language processing of head CT reports to identify intracranial mass effect: CTIME algorithm. Gordon AJ; Banerjee I; Block J; Winstead-Derlega C; Wilson JG; Mitarai T; Jarrett M; Sanyal J; Rubin DL; Wintermark M; Kohn MA Am J Emerg Med; 2022 Jan; 51():388-392. PubMed ID: 34839182 [TBL] [Abstract][Full Text] [Related]
11. Mining tasks and task characteristics from electronic health record audit logs with unsupervised machine learning. Chen B; Alrifai W; Gao C; Jones B; Novak L; Lorenzi N; France D; Malin B; Chen Y J Am Med Inform Assoc; 2021 Jun; 28(6):1168-1177. PubMed ID: 33576432 [TBL] [Abstract][Full Text] [Related]
12. Identifying signs and symptoms of urinary tract infection from emergency department clinical notes using large language models. Iscoe M; Socrates V; Gilson A; Chi L; Li H; Huang T; Kearns T; Perkins R; Khandjian L; Taylor RA Acad Emerg Med; 2024 Jun; 31(6):599-610. PubMed ID: 38567658 [TBL] [Abstract][Full Text] [Related]
13. Predicting next-day discharge via electronic health record access logs. Zhang X; Yan C; Malin BA; Patel MB; Chen Y J Am Med Inform Assoc; 2021 Nov; 28(12):2670-2680. PubMed ID: 34592753 [TBL] [Abstract][Full Text] [Related]
14. Classifying early infant feeding status from clinical notes using natural language processing and machine learning. Lemas DJ; Du X; Rouhizadeh M; Lewis B; Frank S; Wright L; Spirache A; Gonzalez L; Cheves R; Magalhães M; Zapata R; Reddy R; Xu K; Parker L; Harle C; Young B; Louis-Jaques A; Zhang B; Thompson L; Hogan WR; Modave F Sci Rep; 2024 Apr; 14(1):7831. PubMed ID: 38570569 [TBL] [Abstract][Full Text] [Related]
15. Prediction of American Society of Anesthesiologists Physical Status Classification from preoperative clinical text narratives using natural language processing. Chung P; Fong CT; Walters AM; Yetisgen M; O'Reilly-Shah VN BMC Anesthesiol; 2023 Sep; 23(1):296. PubMed ID: 37667258 [TBL] [Abstract][Full Text] [Related]
16. Towards proactive palliative care in oncology: developing an explainable EHR-based machine learning model for mortality risk prediction. Zhuang Q; Zhang AY; Cong RSTY; Yang GM; Neo PSH; Tan DS; Chua ML; Tan IB; Wong FY; Eng Hock Ong M; Shao Wei Lam S; Liu N BMC Palliat Care; 2024 May; 23(1):124. PubMed ID: 38769564 [TBL] [Abstract][Full Text] [Related]
17. Identifying Psychosis Episodes in Psychiatric Admission Notes via Rule-based Methods, Machine Learning, and Pre-Trained Language Models. Hua Y; Blackley S; Shinn A; Skinner J; Moran L; Zhou L Res Sq; 2024 Mar; ():. PubMed ID: 38562731 [TBL] [Abstract][Full Text] [Related]
18. Identifying Psychosis Episodes in Psychiatric Admission Notes via Rule-based Methods, Machine Learning, and Pre-Trained Language Models. Hua Y; Blackley SV; Shinn AK; Skinner JP; Moran LV; Zhou L medRxiv; 2024 Mar; ():. PubMed ID: 38562701 [TBL] [Abstract][Full Text] [Related]
19. Clinical outcome prediction using observational supervision with electronic health records and audit logs. Bhaskhar N; Ip W; Chen JH; Rubin DL J Biomed Inform; 2023 Nov; 147():104522. PubMed ID: 37827476 [TBL] [Abstract][Full Text] [Related]
20. Machine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HR+)/HER2-negative advanced breast cancer patients. Ribelles N; Jerez JM; Rodriguez-Brazzarola P; Jimenez B; Diaz-Redondo T; Mesa H; Marquez A; Sanchez-Muñoz A; Pajares B; Carabantes F; Bermejo MJ; Villar E; Dominguez-Recio ME; Saez E; Galvez L; Godoy A; Franco L; Ruiz-Medina S; Lopez I; Alba E Eur J Cancer; 2021 Feb; 144():224-231. PubMed ID: 33373867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]