These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38700385)

  • 61. Stable Li-Metal Batteries Enabled by in Situ Gelation of an Electrolyte and In-Built Fluorinated Solid Electrolyte Interface.
    Jiao X; Wang J; Gao G; Zhang X; Fu C; Wang L; Wang Y; Liu T
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60054-60062. PubMed ID: 34879648
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries.
    Liu Y; Tao X; Wang Y; Jiang C; Ma C; Sheng O; Lu G; Lou XWD
    Science; 2022 Feb; 375(6582):739-745. PubMed ID: 35175797
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Proximity Matters: Interfacial Solvation Dictates Solid Electrolyte Interphase Composition.
    Oyakhire ST; Liao SL; Shuchi SB; Kim MS; Kim SC; Yu Z; Vilá RA; Rudnicki PE; Cui Y; Bent SF
    Nano Lett; 2023 Aug; 23(16):7524-7531. PubMed ID: 37565722
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Green
    Wu N; Shi YR; Jia T; Du XN; Yin YX; Xin S; Guo YG
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43200-43205. PubMed ID: 31657547
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery.
    Fan X; Ji X; Han F; Yue J; Chen J; Chen L; Deng T; Jiang J; Wang C
    Sci Adv; 2018 Dec; 4(12):eaau9245. PubMed ID: 30588493
    [TBL] [Abstract][Full Text] [Related]  

  • 66. LiFSI and LiDFBOP Dual-Salt Electrolyte Reinforces the Solid Electrolyte Interphase on a Lithium Metal Anode.
    Liu S; Zhang Q; Wang X; Xu M; Li W; Lucht BL
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33719-33728. PubMed ID: 32608965
    [TBL] [Abstract][Full Text] [Related]  

  • 67. In Situ Formed Gradient Composite Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes.
    Zhang CH; Jin T; Liu J; Ma J; Li NW; Yu L
    Small; 2023 Sep; 19(38):e2301523. PubMed ID: 37194981
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Stable Rooted Solid Electrolyte Interphase for Lithium-Ion Batteries.
    Jiang H; Liu J; Wang M; Wang J; Sun T; Hu L; Zhu J; Tang Y; Wang J
    J Phys Chem Lett; 2021 Nov; 12(43):10521-10531. PubMed ID: 34677983
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Construction of 3D lithium metal anode using bi-functional composite separator: a new approach for lithium battery.
    Liu F; Xiang T; Xue J; Jia S; Yan J; Huo H; Zhou J; Li L
    RSC Adv; 2023 Oct; 13(43):30086-30091. PubMed ID: 37842666
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Deciphering the Dynamic Processes at the Electrode-Electrolyte Interface for Stable Deposition of Lithium.
    Dutta A; Kubo Y; Nagataki A; Matsushita K
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15467-15477. PubMed ID: 36916877
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Hexachloro-1,3-butadiene as a Functional Additive for Constructing an Efficient Solid Electrolyte Interface Layer for Long-Life Stable Li Anodes.
    Fu X; Duan H; Zhang S; Bi R; Deng Y; Chen G
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):55709-55718. PubMed ID: 36472852
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Li
    Wang C; Xie Y; Huang Y; Zhou S; Xie H; Jin H; Ji H
    Angew Chem Int Ed Engl; 2024 May; 63(21):e202402301. PubMed ID: 38482741
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Interfacial Layers with Desolvation Function Induced Stable Deposition of Lithium Metal for Long-Cycling Lithium Metal Batteries.
    Qu Z; Chen K; Wang W; Dai Y; Lu X; Lyu SS
    Nano Lett; 2024 Jul; 24(26):8055-8062. PubMed ID: 38904262
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Unveiling the Mystery of LiF within Solid Electrolyte Interphase in Lithium Batteries.
    Li Z; Wang L; Huang X; He X
    Small; 2024 May; 20(22):e2305429. PubMed ID: 38098303
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Stabilizing Solid-state Lithium Metal Batteries through In Situ Generated Janus-heterarchical LiF-rich SEI in Ionic Liquid Confined 3D MOF/Polymer Membranes.
    Zhang X; Su Q; Du G; Xu B; Wang S; Chen Z; Wang L; Huang W; Pang H
    Angew Chem Int Ed Engl; 2023 Sep; 62(39):e202304947. PubMed ID: 37249158
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of the Separator MOF-Al
    Yang LY; Cao JH; Liang WH; Wang YK; Wu DY
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13722-13732. PubMed ID: 35274932
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Designing a Stable Solid Electrolyte Interphase on Lithium Metal Anodes by Tailoring a Mg Atom Center and the Inner Helmholtz Plane for Lithium-Sulfur Batteries.
    Tan J; Li X; Fang Z; Shen J
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):17893-17903. PubMed ID: 36996578
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Enhancing the Stability of Metallic Li Anodes for Aprotic Li-O
    Zhang Y; Gou Z; Zheng K; Dou Y; Zhou Z
    J Phys Chem Lett; 2024 Jun; 15(25):6598-6604. PubMed ID: 38885459
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Revisiting Solid Electrolyte Interphase on the Carbonaceous Electrodes Using Soft X-ray Absorption Spectroscopy.
    Kim Y; Kim DS; Um JH; Yoon J; Kim JM; Kim H; Yoon WS
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29992-29999. PubMed ID: 30088911
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Lithium Metal Electrode with Increased Air Stability and Robust Solid Electrolyte Interphase Realized by Silane Coupling Agent Modification.
    Wang Y; Wang Z; Zhao L; Fan Q; Zeng X; Liu S; Pang WK; He YB; Guo Z
    Adv Mater; 2021 Apr; 33(14):e2008133. PubMed ID: 33656208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.