These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 38700415)
1. High-entropy materials for thermoelectric applications: towards performance and reliability. Oueldna N; Sabi N; Aziam H; Trabadelo V; Ben Youcef H Mater Horiz; 2024 May; 11(10):2323-2354. PubMed ID: 38700415 [TBL] [Abstract][Full Text] [Related]
2. High-Entropy Materials for Prospective Biomedical Applications: Challenges and Opportunities. Chang L; Jing H; Liu C; Qiu C; Ling X Adv Sci (Weinh); 2024 Sep; ():e2406521. PubMed ID: 39248345 [TBL] [Abstract][Full Text] [Related]
3. Thermodynamic Routes to Ultralow Thermal Conductivity and High Thermoelectric Performance. Wei PC; Liao CN; Wu HJ; Yang D; He J; Biesold-McGee GV; Liang S; Yen WT; Tang X; Yeh JW; Lin Z; He JH Adv Mater; 2020 Mar; 32(12):e1906457. PubMed ID: 32048359 [TBL] [Abstract][Full Text] [Related]
4. High Entropy Oxides: Mapping the Landscape from Fundamentals to Future Vistas: Focus Review. Sen S; Palabathuni M; Ryan KM; Singh S ACS Energy Lett; 2024 Aug; 9(8):3694-3718. PubMed ID: 39144813 [TBL] [Abstract][Full Text] [Related]
5. Investigation of PbSnTeSe High-Entropy Thermoelectric Alloy: A DFT Approach. Xia M; Record MC; Boulet P Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614578 [TBL] [Abstract][Full Text] [Related]
6. High-entropy materials for energy-related applications. Fu M; Ma X; Zhao K; Li X; Su D iScience; 2021 Mar; 24(3):102177. PubMed ID: 33718829 [TBL] [Abstract][Full Text] [Related]
7. Recent Advances and Prospects of Small Molecular Organic Thermoelectric Materials. Zhou D; Zhang H; Zheng H; Xu Z; Xu H; Guo H; Li P; Tong Y; Hu B; Chen L Small; 2022 Jun; 18(23):e2200679. PubMed ID: 35285160 [TBL] [Abstract][Full Text] [Related]
8. High-Entropy Photothermal Materials. He CY; Li Y; Zhou ZH; Liu BH; Gao XH Adv Mater; 2024 Jun; 36(24):e2400920. PubMed ID: 38437805 [TBL] [Abstract][Full Text] [Related]
9. Muti-dimensional High-entropy Materials for Energy Conversion Reactions: Current State and Future Trends. Dong Y; Zhang L; Wu T; Zhan Y; Zhou B; Wei F; Zhang D; Long X ChemSusChem; 2024 Jul; ():e202401261. PubMed ID: 39010254 [TBL] [Abstract][Full Text] [Related]
10. High-Entropy Materials in Electrocatalysis: Understanding, Design, and Development. Wu J; Wang H; Liu N; Jia B; Zheng J Small; 2024 Oct; 20(43):e2403162. PubMed ID: 38934346 [TBL] [Abstract][Full Text] [Related]
11. Thermoelectric Materials and Devices for Advanced Biomedical Applications. Jia S; Ma H; Gao S; Yang L; Sun Q Small; 2024 Oct; ():e2405019. PubMed ID: 39392147 [TBL] [Abstract][Full Text] [Related]
12. Recent Progress in Designing Thermoelectric Metal-Organic Frameworks. Fan Y; Liu Z; Chen G Small; 2021 Sep; 17(38):e2100505. PubMed ID: 34047067 [TBL] [Abstract][Full Text] [Related]
13. High-entropy materials for catalysis: A new frontier. Sun Y; Dai S Sci Adv; 2021 May; 7(20):. PubMed ID: 33980494 [TBL] [Abstract][Full Text] [Related]
14. Chemical doping of organic semiconductors for thermoelectric applications. Zhao W; Ding J; Zou Y; Di CA; Zhu D Chem Soc Rev; 2020 Oct; 49(20):7210-7228. PubMed ID: 32975251 [TBL] [Abstract][Full Text] [Related]
15. High-Entropy Metal-Organic Frameworks (HEMOFs): A New Frontier in Materials Design for CO Sikma RE; Vogel DJ; Reyes RA; Meyerson ML; Kotula PG; Gallis DFS Adv Mater; 2024 Sep; ():e2407435. PubMed ID: 39246129 [TBL] [Abstract][Full Text] [Related]
16. High-Entropy Materials for Application: Electricity, Magnetism, and Optics. Gu X; Guo XB; Li WH; Jiang YP; Liu QX; Tang XG ACS Appl Mater Interfaces; 2024 Oct; 16(40):53372-53392. PubMed ID: 39324826 [TBL] [Abstract][Full Text] [Related]
17. Carbon Nanotube-Based Organic Thermoelectric Materials for Energy Harvesting. Wang X; Wang H; Liu B Polymers (Basel); 2018 Oct; 10(11):. PubMed ID: 30961121 [TBL] [Abstract][Full Text] [Related]