These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38700553)

  • 1. Shades of gravity - effects of planetary gravity levels on electrocortical activity and neurocognitive performance.
    Badalì C; Wollseiffen P; Schneider S
    Brain Struct Funct; 2024 Jun; 229(5):1265-1277. PubMed ID: 38700553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Under pressure-the influence of hypergravity on electrocortical activity and neurocognitive performance.
    Badalì C; Wollseiffen P; Schneider S
    Exp Brain Res; 2023 Sep; 241(9):2249-2259. PubMed ID: 37542004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurocognitive performance is enhanced during short periods of microgravity-Part 2.
    Wollseiffen P; Klein T; Vogt T; Abeln V; Strüder HK; Stuckenschneider T; Sanders M; Claassen JAHR; Askew CD; Carnahan H; Schneider S
    Physiol Behav; 2019 Aug; 207():48-54. PubMed ID: 31029651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherence between brain cortical function and neurocognitive performance during changed gravity conditions.
    Brümmer V; Schneider S; Vogt T; Strüder H; Carnahan H; Askew CD; Csuhaj R
    J Vis Exp; 2011 May; (51):. PubMed ID: 21654620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The brain in micro- and hypergravity: the effects of changing gravity on the brain electrocortical activity.
    Marušič U; Meeusen R; Pišot R; Kavcic V
    Eur J Sport Sci; 2014; 14(8):813-22. PubMed ID: 24734884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling human orthostatic responses on the Moon and on Mars.
    Beck P; Tank J; Gauger P; Beck LEJ; Zirngibl H; Jordan J; Limper U
    Clin Auton Res; 2018 Jun; 28(3):325-332. PubMed ID: 29700646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiovascular autonomic adaptation in lunar and martian gravity during parabolic flight.
    Widjaja D; Vandeput S; Van Huffel S; Aubert AE
    Eur J Appl Physiol; 2015 Jun; 115(6):1205-18. PubMed ID: 25875624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The perception of verticality in lunar and Martian gravity conditions.
    de Winkel KN; Clément G; Groen EL; Werkhoven PJ
    Neurosci Lett; 2012 Oct; 529(1):7-11. PubMed ID: 22999922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bouncing on Mars and the Moon-the role of gravity on neuromuscular control: correlation of muscle activity and rate of force development.
    Ritzmann R; Freyler K; Krause A; Gollhofer A
    J Appl Physiol (1985); 2016 Nov; 121(5):1187-1195. PubMed ID: 27660301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of inherent and incidental constraints on bimanual force control in simulated Martian gravity.
    Wang Y; Neto OP; Weinrich M; Abbott R; Diaz-Artiles A; Kennedy DM
    Hum Mov Sci; 2024 Jun; 95():103199. PubMed ID: 38518737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased brain cortical activity during parabolic flights has no influence on a motor tracking task.
    Schneider S; Brümmer V; Mierau A; Carnahan H; Dubrowski A; Strüder HK
    Exp Brain Res; 2008 Mar; 185(4):571-9. PubMed ID: 17973100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulations of gravitational stress on normovolemic and hypovolemic men and women.
    Zhang Q; Knapp CF; Stenger MB; Patwardhan AR; Elayi SC; Wang S; Kostas VI; Evans JM
    Aviat Space Environ Med; 2014 Apr; 85(4):407-13. PubMed ID: 24754201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant biology in reduced gravity on the Moon and Mars.
    Kiss JZ
    Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():12-7. PubMed ID: 23889757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gastrocnemius medialis contractile behavior during running differs between simulated Lunar and Martian gravities.
    Richter C; Braunstein B; Staeudle B; Attias J; Suess A; Weber T; Mileva KN; Rittweger J; Green DA; Albracht K
    Sci Rep; 2021 Nov; 11(1):22555. PubMed ID: 34799596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degraded EEG response of the human brain in function of gravity levels by the method of chaotic attractor.
    Pletser V; Quadens O
    Acta Astronaut; 2003 Apr; 52(7):581-9. PubMed ID: 12575723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lunar and mars gravity induce similar changes in spinal motor control as microgravity.
    Swanenburg J; Easthope CA; Meinke A; Langenfeld A; Green DA; Schweinhardt P
    Front Physiol; 2023; 14():1196929. PubMed ID: 37565140
    [No Abstract]   [Full Text] [Related]  

  • 17. Human locomotion and workload for simulated lunar and Martian environments.
    Newman DJ; Alexander HL
    Acta Astronaut; 1993 Aug; 29(8):613-20. PubMed ID: 11541642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuro-cognitive performance is enhanced during short periods of microgravity.
    Wollseiffen P; Vogt T; Abeln V; Strüder HK; Askew CD; Schneider S
    Physiol Behav; 2016 Mar; 155():9-16. PubMed ID: 26657021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of cardiovascular and biomechanical parameters of supine lower body negative pressure and upright lower body positive pressure to simulate activity in 1/6 G and 3/8 G.
    Schlabs T; Rosales-Velderrain A; Ruckstuhl H; Stahn AC; Hargens AR
    J Appl Physiol (1985); 2013 Jul; 115(2):275-84. PubMed ID: 23640597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of long-term altered gravity on the swimming performance of developing cichlid fish: including results from the 2nd German Spacelab Mission D-2.
    Rahmann H; Hilbig R; Flemming J; Slenzka K
    Adv Space Res; 1996; 17(6-7):121-4. PubMed ID: 11538604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.