These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 38700594)
1. Potential strategies for phytoremediation of heavy metals from wastewater with circular bioeconomy approach. Mandal RR; Bashir Z; Mandal JR; Raj D Environ Monit Assess; 2024 May; 196(6):502. PubMed ID: 38700594 [TBL] [Abstract][Full Text] [Related]
2. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Rai PK Int J Phytoremediation; 2008; 10(2):131-58. PubMed ID: 18709926 [TBL] [Abstract][Full Text] [Related]
3. Heavy metals removal from industrial wastewater of Biskra (Algeria) by Arundo donax and Phragmites australis. Badache S; Seghairi N Environ Monit Assess; 2024 Jul; 196(8):703. PubMed ID: 38967833 [TBL] [Abstract][Full Text] [Related]
4. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Bhat SA; Bashir O; Ul Haq SA; Amin T; Rafiq A; Ali M; Américo-Pinheiro JHP; Sher F Chemosphere; 2022 Sep; 303(Pt 1):134788. PubMed ID: 35504464 [TBL] [Abstract][Full Text] [Related]
5. Heavy-Metal Phytoremediation from Livestock Wastewater and Exploitation of Exhausted Biomass. Hejna M; Onelli E; Moscatelli A; Bellotto M; Cristiani C; Stroppa N; Rossi L Int J Environ Res Public Health; 2021 Feb; 18(5):. PubMed ID: 33668294 [TBL] [Abstract][Full Text] [Related]
6. Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. Rezania S; Ponraj M; Talaiekhozani A; Mohamad SE; Md Din MF; Taib SM; Sabbagh F; Sairan FM J Environ Manage; 2015 Nov; 163():125-33. PubMed ID: 26311085 [TBL] [Abstract][Full Text] [Related]
7. Treatment of electroplating industry wastewater: a review on the various techniques. Rajoria S; Vashishtha M; Sangal VK Environ Sci Pollut Res Int; 2022 Oct; 29(48):72196-72246. PubMed ID: 35084684 [TBL] [Abstract][Full Text] [Related]
8. Uptake of Heavy Metals from Industrial Wastewater Using In Vitro Plant Cultures. Jauhari N; Menon S; Sharma N; Bharadvaja N Bull Environ Contam Toxicol; 2017 Nov; 99(5):614-618. PubMed ID: 28965193 [TBL] [Abstract][Full Text] [Related]
9. The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Mishra S; Maiti A Environ Sci Pollut Res Int; 2017 Mar; 24(9):7921-7937. PubMed ID: 28092006 [TBL] [Abstract][Full Text] [Related]
10. Promising strategies of circular bioeconomy using heavy metal phytoremediated plants - A critical review. Iyyappan J; Baskar G; Deepanraj B; Anand AV; Saravanan R; Awasthi MK Chemosphere; 2023 Feb; 313():137097. PubMed ID: 36334740 [TBL] [Abstract][Full Text] [Related]
11. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants? Schröder P; Lyubenova L; Huber C Environ Sci Pollut Res Int; 2009 Nov; 16(7):795-804. PubMed ID: 19462193 [TBL] [Abstract][Full Text] [Related]
12. Design of a sustainable development process between phytoremediation and production of bioethanol with Eichhornia crassipes. Sayago UFC Environ Monit Assess; 2019 Mar; 191(4):221. PubMed ID: 30877391 [TBL] [Abstract][Full Text] [Related]
13. Algae as a green technology for heavy metals removal from various wastewater. Salama ES; Roh HS; Dev S; Khan MA; Abou-Shanab RAI; Chang SW; Jeon BH World J Microbiol Biotechnol; 2019 May; 35(5):75. PubMed ID: 31053951 [TBL] [Abstract][Full Text] [Related]
14. Sustainability of phytoremediation: Post-harvest stratagems and economic opportunities for the produced metals contaminated biomass. Khan AHA; Kiyani A; Santiago-Herrera M; Ibáñez J; Yousaf S; Iqbal M; Martel-Martín S; Barros R J Environ Manage; 2023 Jan; 326(Pt B):116700. PubMed ID: 36423411 [TBL] [Abstract][Full Text] [Related]
15. Unlocking the potential of Eichhornia crassipes for wastewater treatment: phytoremediation of aquatic pollutants, a strategy for advancing Sustainable Development Goal-06 clean water. Monroy-Licht A; Carranza-Lopez L; De la Parra-Guerra AC; Acevedo-Barrios R Environ Sci Pollut Res Int; 2024 Jul; 31(31):43561-43582. PubMed ID: 38918295 [TBL] [Abstract][Full Text] [Related]
16. Non-phytoremediation and phytoremediation technologies of integrated remediation for water and soil heavy metal pollution: A comprehensive review. Liu N; Zhao J; Du J; Hou C; Zhou X; Chen J; Zhang Y Sci Total Environ; 2024 Oct; 948():174237. PubMed ID: 38942300 [TBL] [Abstract][Full Text] [Related]
17. The fate of dissolved organic carbon (DOC) in the wastewater treatment process and its importance in the removal of wastewater contaminants. Katsoyiannis A; Samara C Environ Sci Pollut Res Int; 2007 Jul; 14(5):284-92. PubMed ID: 17722762 [TBL] [Abstract][Full Text] [Related]
18. A review on disposal and utilization of phytoremediation plants containing heavy metals. Liu Z; Tran KQ Ecotoxicol Environ Saf; 2021 Dec; 226():112821. PubMed ID: 34571420 [TBL] [Abstract][Full Text] [Related]
19. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Sharma S; Singh B; Manchanda VK Environ Sci Pollut Res Int; 2015 Jan; 22(2):946-62. PubMed ID: 25277712 [TBL] [Abstract][Full Text] [Related]
20. Omics approaches in effective selection and generation of potential plants for phytoremediation of heavy metal from contaminated resources. Yadav R; Singh G; Santal AR; Singh NP J Environ Manage; 2023 Jun; 336():117730. PubMed ID: 36921476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]