BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38700737)

  • 1. Heat stress-induced NO enhanced perylenequinone biosynthesis of Shiraia sp. via calcium signaling pathway.
    Bao Z; Chen Y; Zhang Z; Yang H; Yan R; Zhu D
    Appl Microbiol Biotechnol; 2024 May; 108(1):317. PubMed ID: 38700737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat stress enhanced perylenequinones biosynthesis of Shiraia sp. Slf14(w) through nitric oxide formation.
    Xu C; Lin W; Chen Y; Gao B; Zhang Z; Zhu D
    Appl Microbiol Biotechnol; 2023 Jun; 107(11):3745-3761. PubMed ID: 37126084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L-Arginine enhanced perylenequinone production in the endophytic fungus Shiraia sp. Slf14(w) via NO signaling pathway.
    Chen Y; Xu C; Yang H; Liu Z; Zhang Z; Yan R; Zhu D
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2619-2636. PubMed ID: 35291023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced production of perylenequinones in the endophytic fungus Shiraia sp. Slf14 by calcium/calmodulin signal transduction.
    Liu B; Bao J; Zhang Z; Yan R; Wang Y; Yang H; Zhu D
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):153-163. PubMed ID: 29098415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide mediates red light-induced perylenequinone production in Shiraia mycelium culture.
    Wang WJ; Li XP; Shen WH; Huang QY; Cong RP; Zheng LP; Wang JW
    Bioresour Bioprocess; 2024 Jan; 11(1):2. PubMed ID: 38647587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome analysis on fructose as the sole carbon source enhancing perylenequinones production of endophytic fungus
    Liu Z; Bao J; Yang H; Zhang Z; Yan R; Zhu D
    3 Biotech; 2020 May; 10(5):190. PubMed ID: 32269895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inducing perylenequinone production from a bambusicolous fungus Shiraia sp. S9 through co-culture with a fruiting body-associated bacterium Pseudomonas fulva SB1.
    Ma YJ; Zheng LP; Wang JW
    Microb Cell Fact; 2019 Jul; 18(1):121. PubMed ID: 31277643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide regulates perylenequinones biosynthesis in Shiraia bambusicola S4201 induced by hydrogen peroxide.
    Zhao N; Yu Y; Yue Y; Dou M; Guo B; Yan S; Chen S
    Sci Rep; 2021 Jan; 11(1):2365. PubMed ID: 33504905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide donor sodium nitroprusside-induced transcriptional changes and hypocrellin biosynthesis of Shiraia sp. S9.
    Ma YJ; Li XP; Wang Y; Wang JW
    Microb Cell Fact; 2021 Apr; 20(1):92. PubMed ID: 33910564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrasting regulation of live Bacillus cereus No.1 and its volatiles on Shiraia perylenequinone production.
    Xu R; Li XP; Zhang X; Shen WH; Min CY; Wang JW
    Microb Cell Fact; 2022 Aug; 21(1):172. PubMed ID: 35999640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross Talk between Nitric Oxide and Calcium-Calmodulin Regulates Ganoderic Acid Biosynthesis in Ganoderma lucidum under Heat Stress.
    Liu R; Shi L; Zhu T; Yang T; Ren A; Zhu J; Zhao MW
    Appl Environ Microbiol; 2018 May; 84(10):. PubMed ID: 29572207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The signaling role of extracellular ATP in co-culture of Shiraia sp. S9 and Pseudomonas fulva SB1 for enhancing hypocrellin A production.
    Li XP; Zhou LL; Guo YH; Wang JW
    Microb Cell Fact; 2021 Jul; 20(1):144. PubMed ID: 34301268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of branched-chain amino acids on Shiraia perylenequinone production in mycelium cultures.
    Shen WH; Cong RP; Li XP; Huang QY; Zheng LP; Wang JW
    Microb Cell Fact; 2023 Mar; 22(1):57. PubMed ID: 36964527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide mediates hypocrellin accumulation induced by fungal elicitor in submerged cultures of Shiraia bambusicola.
    Du W; Liang J; Han Y; Yu J; Liang Z
    Biotechnol Lett; 2015 Jan; 37(1):153-9. PubMed ID: 25214226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of calcium/calmodulin signaling in cercosporin toxin biosynthesis by Cercospora nicotianae.
    Chung KR
    Appl Environ Microbiol; 2003 Feb; 69(2):1187-96. PubMed ID: 12571046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive Responses to Oxidative Stress in the Filamentous Fungal Shiraia bambusicola.
    Deng H; Chen J; Gao R; Liao X; Cai Y
    Molecules; 2016 Aug; 21(9):. PubMed ID: 27563871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic responses involved in enhanced production of hypocrellin A by addition of Triton X-100 in submerged cultures of Shiraia bambusicola.
    Lei XY; Zhang MY; Ma YJ; Wang JW
    J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1415-1429. PubMed ID: 28685359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De Novo Transcriptome Assembly in Shiraia bambusicola to Investigate Putative Genes Involved in the Biosynthesis of Hypocrellin A.
    Zhao N; Lin X; Qi SS; Luo ZM; Chen SL; Yan SZ
    Int J Mol Sci; 2016 Feb; 17(3):311. PubMed ID: 26927096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Blue Light on Hypocrellin A Production in Shiraia Mycelium Cultures.
    Li XP; Ji HY; Wang WJ; Shen WH; Wang JW
    Photochem Photobiol; 2022 Nov; 98(6):1343-1354. PubMed ID: 35506756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gentic overexpression increases production of hypocrellin A in Shiraia bambusicola S4201.
    Li D; Zhao N; Guo BJ; Lin X; Chen SL; Yan SZ
    J Microbiol; 2019 Feb; 57(2):154-162. PubMed ID: 30706344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.