These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 38700741)
1. Breaking the Barriers: Machine-Learning-Based c-RASAR Approach for Accurate Blood-Brain Barrier Permeability Prediction. Kumar V; Banerjee A; Roy K J Chem Inf Model; 2024 May; 64(10):4298-4309. PubMed ID: 38700741 [TBL] [Abstract][Full Text] [Related]
2. Prediction-Inspired Intelligent Training for the Development of Classification Read-across Structure-Activity Relationship (c-RASAR) Models for Organic Skin Sensitizers: Assessment of Classification Error Rate from Novel Similarity Coefficients. Banerjee A; Roy K Chem Res Toxicol; 2023 Sep; 36(9):1518-1531. PubMed ID: 37584642 [TBL] [Abstract][Full Text] [Related]
3. The application of chemical similarity measures in an unconventional modeling framework c-RASAR along with dimensionality reduction techniques to a representative hepatotoxicity dataset. Banerjee A; Roy K Sci Rep; 2024 Sep; 14(1):20812. PubMed ID: 39242880 [TBL] [Abstract][Full Text] [Related]
4. A curated diverse molecular database of blood-brain barrier permeability with chemical descriptors. Meng F; Xi Y; Huang J; Ayers PW Sci Data; 2021 Oct; 8(1):289. PubMed ID: 34716354 [TBL] [Abstract][Full Text] [Related]
5. Machine Learning Exploration of the Relationship Between Drugs and the Blood-Brain Barrier: Guiding Molecular Modification. Yang Q; Fan L; Hao E; Hou X; Deng J; Xia Z; Du Z Pharm Res; 2024 May; 41(5):863-875. PubMed ID: 38605261 [TBL] [Abstract][Full Text] [Related]
6. Efficient predictions of cytotoxicity of TiO Banerjee A; Kar S; Pore S; Roy K Nanotoxicology; 2023 Feb; 17(1):78-93. PubMed ID: 36891579 [TBL] [Abstract][Full Text] [Related]
7. Predicting blood-brain barrier permeability of molecules with a large language model and machine learning. Huang ETC; Yang JS; Liao KYK; Tseng WCW; Lee CK; Gill M; Compas C; See S; Tsai FJ Sci Rep; 2024 Jul; 14(1):15844. PubMed ID: 38982309 [TBL] [Abstract][Full Text] [Related]
8. Machine learning - based q-RASAR modeling to predict acute contact toxicity of binary organic pesticide mixtures in honey bees. Chatterjee M; Banerjee A; Tosi S; Carnesecchi E; Benfenati E; Roy K J Hazard Mater; 2023 Oct; 460():132358. PubMed ID: 37634379 [TBL] [Abstract][Full Text] [Related]
9. On Some Novel Similarity-Based Functions Used in the ML-Based q-RASAR Approach for Efficient Quantitative Predictions of Selected Toxicity End Points. Banerjee A; Roy K Chem Res Toxicol; 2023 Mar; 36(3):446-464. PubMed ID: 36811528 [TBL] [Abstract][Full Text] [Related]
10. [Resampling combined with stacking learning for prediction of blood-brain barrier permeability of compounds]. Su Q; Xiao G; Zhou W; Du Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Aug; 40(4):753-761. PubMed ID: 37666766 [TBL] [Abstract][Full Text] [Related]
11. Machine learning-based q-RASAR predictions of the bioconcentration factor of organic molecules estimated following the organisation for economic co-operation and development guideline 305. Pore S; Pelloux A; Chatterjee M; Banerjee A; Roy K J Hazard Mater; 2024 Nov; 479():135725. PubMed ID: 39243539 [TBL] [Abstract][Full Text] [Related]
12. Molecular similarity in chemical informatics and predictive toxicity modeling: from quantitative read-across (q-RA) to quantitative read-across structure-activity relationship (q-RASAR) with the application of machine learning. Banerjee A; Kar S; Roy K; Patlewicz G; Charest N; Benfenati E; Cronin MTD Crit Rev Toxicol; 2024 Oct; 54(9):659-684. PubMed ID: 39225123 [TBL] [Abstract][Full Text] [Related]
13. Prediction of blood-brain barrier permeability using machine learning approaches based on various molecular representation. Liang L; Liu Z; Yang X; Zhang Y; Liu H; Chen Y Mol Inform; 2024 Sep; 43(9):e202300327. PubMed ID: 38864837 [TBL] [Abstract][Full Text] [Related]
14. First report of q-RASAR modeling toward an approach of easy interpretability and efficient transferability. Banerjee A; Roy K Mol Divers; 2022 Oct; 26(5):2847-2862. PubMed ID: 35767129 [TBL] [Abstract][Full Text] [Related]
15. Molecular Similarity in Predictive Toxicology with a Focus on the q-RASAR Technique. Banerjee A; Roy K Methods Mol Biol; 2025; 2834():41-63. PubMed ID: 39312159 [TBL] [Abstract][Full Text] [Related]
16. A Recurrent Neural Network model to predict blood-brain barrier permeability. Alsenan S; Al-Turaiki I; Hafez A Comput Biol Chem; 2020 Dec; 89():107377. PubMed ID: 33010784 [TBL] [Abstract][Full Text] [Related]
17. Quantitative read-across structure-activity relationship (q-RASAR): A novel approach to estimate the subchronic oral safety (NOAEL) of diverse organic chemicals in rats. Ghosh S; Roy K Toxicology; 2024 Jun; 505():153824. PubMed ID: 38705560 [TBL] [Abstract][Full Text] [Related]
18. QSAR modeling of the blood-brain barrier permeability for diverse organic compounds. Zhang L; Zhu H; Oprea TI; Golbraikh A; Tropsha A Pharm Res; 2008 Aug; 25(8):1902-14. PubMed ID: 18553217 [TBL] [Abstract][Full Text] [Related]
19. In silico modeling on ADME properties of natural products: Classification models for blood-brain barrier permeability, its application to traditional Chinese medicine and in vitro experimental validation. Zhang X; Liu T; Fan X; Ai N J Mol Graph Model; 2017 Aug; 75():347-354. PubMed ID: 28628860 [TBL] [Abstract][Full Text] [Related]
20. DeePred-BBB: A Blood Brain Barrier Permeability Prediction Model With Improved Accuracy. Kumar R; Sharma A; Alexiou A; Bilgrami AL; Kamal MA; Ashraf GM Front Neurosci; 2022; 16():858126. PubMed ID: 35592264 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]