These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38701099)

  • 1. A systematic analysis of regression models for protein engineering.
    Michael R; Kæstel-Hansen J; Mørch Groth P; Bartels S; Salomon J; Tian P; Hatzakis NS; Boomsma W
    PLoS Comput Biol; 2024 May; 20(5):e1012061. PubMed ID: 38701099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine-learning-guided directed evolution for protein engineering.
    Yang KK; Wu Z; Arnold FH
    Nat Methods; 2019 Aug; 16(8):687-694. PubMed ID: 31308553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algorithms for protein design.
    Gainza P; Nisonoff HM; Donald BR
    Curr Opin Struct Biol; 2016 Aug; 39():16-26. PubMed ID: 27086078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational protein design with backbone plasticity.
    MacDonald JT; Freemont PS
    Biochem Soc Trans; 2016 Oct; 44(5):1523-1529. PubMed ID: 27911735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational tools for designing and engineering biocatalysts.
    Damborsky J; Brezovsky J
    Curr Opin Chem Biol; 2009 Feb; 13(1):26-34. PubMed ID: 19297237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning to navigate fitness landscapes for protein engineering.
    Freschlin CR; Fahlberg SA; Romero PA
    Curr Opin Biotechnol; 2022 Jun; 75():102713. PubMed ID: 35413604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An intelligent decision support system for crop yield prediction using hybrid machine learning algorithms.
    Anbananthen KSM; Subbiah S; Chelliah D; Sivakumar P; Somasundaram V; Velshankar KH; Khan MKAA
    F1000Res; 2021; 10():1143. PubMed ID: 34987773
    [No Abstract]   [Full Text] [Related]  

  • 8. Systematic evaluation of machine learning methods for identifying human-pathogen protein-protein interactions.
    Chen H; Li F; Wang L; Jin Y; Chi CH; Kurgan L; Song J; Shen J
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32459334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leveraging Uncertainty in Machine Learning Accelerates Biological Discovery and Design.
    Hie B; Bryson BD; Berger B
    Cell Syst; 2020 Nov; 11(5):461-477.e9. PubMed ID: 33065027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Protein Design with Deep Learning Neural Networks.
    Wang J; Cao H; Zhang JZH; Qi Y
    Sci Rep; 2018 Apr; 8(1):6349. PubMed ID: 29679026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning approach to gene essentiality prediction: a review.
    Aromolaran O; Aromolaran D; Isewon I; Oyelade J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33842944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of protein catalysts.
    Hilvert D
    Annu Rev Biochem; 2013; 82():447-70. PubMed ID: 23746259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal design of thermally stable proteins.
    Bannen RM; Suresh V; Phillips GN; Wright SJ; Mitchell JC
    Bioinformatics; 2008 Oct; 24(20):2339-43. PubMed ID: 18723523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the Performance of Synthetic Riboswitches using Machine Learning.
    Groher AC; Jager S; Schneider C; Groher F; Hamacher K; Suess B
    ACS Synth Biol; 2019 Jan; 8(1):34-44. PubMed ID: 30513199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring Protein Supersecondary Structure Through Changes in Protein Folding, Stability, and Flexibility.
    Pires DEV; Rodrigues CHM; Albanaz ATS; Karmakar M; Myung Y; Xavier J; Michanetzi EM; Portelli S; Ascher DB
    Methods Mol Biol; 2019; 1958():173-185. PubMed ID: 30945219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved protein contact predictions with the MetaPSICOV2 server in CASP12.
    Buchan DWA; Jones DT
    Proteins; 2018 Mar; 86 Suppl 1(Suppl Suppl 1):78-83. PubMed ID: 28901583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-Neighborhood Learning for Global Alignment in Biological Networks.
    Ma L; Wang S; Lin Q; Li J; You Z; Huang J; Gong M
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2598-2611. PubMed ID: 32305933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides.
    Xu J; Li F; Leier A; Xiang D; Shen HH; Marquez Lago TT; Li J; Yu DJ; Song J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33774670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data driven flexible backbone protein design.
    Sun MGF; Kim PM
    PLoS Comput Biol; 2017 Aug; 13(8):e1005722. PubMed ID: 28837553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design.
    Ojewole A; Lowegard A; Gainza P; Reeve SM; Georgiev I; Anderson AC; Donald BR
    Methods Mol Biol; 2017; 1529():291-306. PubMed ID: 27914058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.