These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 38701386)
1. Modulation of the Association Between Corticospinal Tract Damage and Outcome After Stroke by White Matter Hyperintensities. Ferris JK; Lo BP; Barisano G; Brodtmann A; Buetefisch CM; Conforto AB; Donnelly MR; Egorova-Brumley N; Hayward KS; Khlif MS; Revill KP; Zavaliangos-Petropulu A; Boyd L; Liew SL Neurology; 2024 May; 102(10):e209387. PubMed ID: 38701386 [TBL] [Abstract][Full Text] [Related]
2. White matter hyperintensities modify relationships between corticospinal tract damage and motor outcomes after stroke. Ferris JK; Lo BP; Barisano G; Brodtmann A; Buetefisch CM; Conforto AB; Donnelly MH; Egorova-Brumley N; Hayward KS; Khlif MS; Revill KP; Zavaliangos-Petropulu A; Boyd LA; Liew SL medRxiv; 2023 Oct; ():. PubMed ID: 37961329 [TBL] [Abstract][Full Text] [Related]
3. Observational Study of Neuroimaging Biomarkers of Severe Upper Limb Impairment After Stroke. Hayward KS; Ferris JK; Lohse KR; Borich MR; Borstad A; Cassidy JM; Cramer SC; Dukelow SP; Findlater SE; Hawe RL; Liew SL; Neva JL; Stewart JC; Boyd LA Neurology; 2022 Jul; 99(4):e402-e413. PubMed ID: 35550551 [TBL] [Abstract][Full Text] [Related]
4. Proportional Recovery From Lower Limb Motor Impairment After Stroke. Smith MC; Byblow WD; Barber PA; Stinear CM Stroke; 2017 May; 48(5):1400-1403. PubMed ID: 28341754 [TBL] [Abstract][Full Text] [Related]
5. Relation of white matter hyperintensities and motor deficits in chronic stroke. Hicks JM; Taub E; Womble B; Barghi A; Rickards T; Mark VW; Uswatte G Restor Neurol Neurosci; 2018; 36(3):349-357. PubMed ID: 29782327 [TBL] [Abstract][Full Text] [Related]
6. Corticospinal tract lesion load: An imaging biomarker for stroke motor outcomes. Feng W; Wang J; Chhatbar PY; Doughty C; Landsittel D; Lioutas VA; Kautz SA; Schlaug G Ann Neurol; 2015 Dec; 78(6):860-70. PubMed ID: 26289123 [TBL] [Abstract][Full Text] [Related]
7. Corticospinal Tract Lesion Load Originating From Both Ventral Premotor and Primary Motor Cortices Are Associated With Post-stroke Motor Severity. Ito KL; Kim B; Liu J; Soekadar SR; Winstein C; Yu C; Cramer SC; Schweighofer N; Liew SL Neurorehabil Neural Repair; 2022 Mar; 36(3):179-182. PubMed ID: 34951947 [TBL] [Abstract][Full Text] [Related]
8. Comparing CST Lesion Metrics as Biomarkers for Recovery of Motor and Proprioceptive Impairments After Stroke. Findlater SE; Hawe RL; Mazerolle EL; Al Sultan AS; Cassidy JM; Scott SH; Pike GB; Dukelow SP Neurorehabil Neural Repair; 2019 Oct; 33(10):848-861. PubMed ID: 31434533 [No Abstract] [Full Text] [Related]
9. Does Measurement of Corticospinal Tract Involvement Add Value to Clinical Behavioral Biomarkers in Predicting Motor Recovery after Stroke? Lim JY; Oh MK; Park J; Paik NJ Neural Plast; 2020; 2020():8883839. PubMed ID: 33354207 [TBL] [Abstract][Full Text] [Related]
11. White Matter Hyperintensities and Cognitive Functions in People With the R544C Variant of the Tung H; Chou CC; Chen HM; Chen YM; Wu YY; Chai JW; Chen JP; Chen SC; Chen HC; Lee WJ Neurology; 2024 Nov; 103(9):e209941. PubMed ID: 39374470 [TBL] [Abstract][Full Text] [Related]
12. Differential Impact of Acute Lesions Versus White Matter Hyperintensities on Stroke Recovery. Hawe RL; Findlater SE; Kenzie JM; Hill MD; Scott SH; Dukelow SP J Am Heart Assoc; 2018 Sep; 7(18):e009360. PubMed ID: 30371192 [TBL] [Abstract][Full Text] [Related]
13. The role of corticospinal tract damage in chronic motor recovery and neurorehabilitation: a pilot study. Sterr A; Shen S; Szameitat AJ; Herron KA Neurorehabil Neural Repair; 2010 Jun; 24(5):413-9. PubMed ID: 20516488 [TBL] [Abstract][Full Text] [Related]
14. Determining Corticospinal Tract Injury from Stroke Using Computed Tomography. Lam TK; Cheung DK; Climans SA; Black SE; Gao F; Szilagyi GM; Mochizuki G; Chen JL Can J Neurol Sci; 2020 Nov; 47(6):775-784. PubMed ID: 32493533 [TBL] [Abstract][Full Text] [Related]
15. Three-tissue compositional analysis reveals in-vivo microstructural heterogeneity of white matter hyperintensities following stroke. Khan W; Egorova N; Khlif MS; Mito R; Dhollander T; Brodtmann A Neuroimage; 2020 Sep; 218():116869. PubMed ID: 32334092 [TBL] [Abstract][Full Text] [Related]
16. Strategic white matter hyperintensity locations associated with post-stroke cognitive impairment: A multicenter study in 1568 stroke patients. Coenen M; de Kort FA; Weaver NA; Kuijf HJ; Aben HP; Bae HJ; Bordet R; Chen CP; Dewenter A; Doeven T; Dondaine T; Duering M; Fang R; van der Giessen RS; Kim J; Kim BJ; de Kort PL; Koudstaal PJ; Lee M; Lim JS; Lopes R; van Oostenbrugge RJ; Staals J; Yu KH; Biessels GJ; Biesbroek JM Int J Stroke; 2024 Oct; 19(8):916-924. PubMed ID: 38651756 [TBL] [Abstract][Full Text] [Related]
17. Individual recovery profiles of manual dexterity, and relation to corticospinal lesion load and excitability after stroke -a longitudinal pilot study. Birchenall J; Térémetz M; Roca P; Lamy JC; Oppenheim C; Maier MA; Mas JL; Lamy C; Baron JC; Lindberg PG Neurophysiol Clin; 2019 Apr; 49(2):149-164. PubMed ID: 30391148 [TBL] [Abstract][Full Text] [Related]
18. Corticospinal Fibers With Different Origins Impact Motor Outcome and Brain After Subcortical Stroke. Liu J; Wang C; Qin W; Ding H; Guo J; Han T; Cheng J; Yu C Stroke; 2020 Jul; 51(7):2170-2178. PubMed ID: 32568657 [TBL] [Abstract][Full Text] [Related]
19. Investigating the microstructural properties of normal-appearing white matter (NAWM) preceding conversion to white matter hyperintensities (WMHs) in stroke survivors. Khan W; Khlif MS; Mito R; Dhollander T; Brodtmann A Neuroimage; 2021 May; 232():117839. PubMed ID: 33577935 [TBL] [Abstract][Full Text] [Related]