These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38701424)
1. Computer-Aided Semi-Rational Design to Enhance the Activity of l-Sorbosone Dehydrogenase from Li D; Wang X; Huo L; Zeng W; Li J; Zhou J J Agric Food Chem; 2024 May; 72(19):10995-11001. PubMed ID: 38701424 [TBL] [Abstract][Full Text] [Related]
2. Systematic characterization of sorbose/sorbosone dehydrogenases and sorbosone dehydrogenases from Ketogulonicigenium vulgare WSH-001. Wang P; Zeng W; Du G; Zhou J; Chen J J Biotechnol; 2019 Aug; 301():24-34. PubMed ID: 31136757 [TBL] [Abstract][Full Text] [Related]
4. Stepwise metabolic engineering of Gluconobacter oxydans WSH-003 for the direct production of 2-keto-L-gulonic acid from D-sorbitol. Gao L; Hu Y; Liu J; Du G; Zhou J; Chen J Metab Eng; 2014 Jul; 24():30-7. PubMed ID: 24792618 [TBL] [Abstract][Full Text] [Related]
5. Combined evolutionary and metabolic engineering improve 2-keto-L-gulonic acid production in Gluconobacter oxydans WSH-004. Li D; Liu L; Qin Z; Yu S; Zhou J Bioresour Technol; 2022 Jun; 354():127107. PubMed ID: 35381333 [TBL] [Abstract][Full Text] [Related]
6. The membrane-bound sorbosone dehydrogenase of Gluconacetobacter liquefaciens is a pyrroloquinoline quinone-dependent enzyme. Yakushi T; Takahashi R; Matsutani M; Kataoka N; Hours RA; Ano Y; Adachi O; Matsushita K Enzyme Microb Technol; 2020 Jun; 137():109511. PubMed ID: 32423666 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a group of pyrroloquinoline quinone-dependent dehydrogenases that are involved in the conversion of L-sorbose to 2-Keto-L-gulonic acid in Ketogulonicigenium vulgare WSH-001. Gao L; Du G; Zhou J; Chen J; Liu J Biotechnol Prog; 2013; 29(6):1398-404. PubMed ID: 23970495 [TBL] [Abstract][Full Text] [Related]
8. Combinational expression of sorbose/sorbosone dehydrogenases and cofactor pyrroloquinoline quinone increases 2-keto-L-gulonic acid production in Ketogulonigenium vulgare-Bacillus cereus consortium. Du J; Bai W; Song H; Yuan YJ Metab Eng; 2013 Sep; 19():50-6. PubMed ID: 23747604 [TBL] [Abstract][Full Text] [Related]
9. Direct fermentation of 2-keto-L-gulonic acid in recombinant Gluconobacter oxydans. Saito Y; Ishii Y; Hayashi H; Yoshikawa K; Noguchi Y; Yoshida S; Soeda S; Yoshida M Biotechnol Bioeng; 1998 Apr 20-May 5; 58(2-3):309-15. PubMed ID: 10191408 [TBL] [Abstract][Full Text] [Related]
10. Structural Insight into the Catalytic Mechanisms of an L-Sorbosone Dehydrogenase. Li D; Deng Z; Hou X; Qin Z; Wang X; Yin D; Chen Y; Rao Y; Chen J; Zhou J Adv Sci (Weinh); 2023 Oct; 10(30):e2301955. PubMed ID: 37679059 [TBL] [Abstract][Full Text] [Related]
11. Combined engineering of l-sorbose dehydrogenase and fermentation optimization to increase 2-keto-l-gulonic acid production in Escherichia coli. Li D; Wang X; Qin Z; Yu S; Chen J; Zhou J Bioresour Technol; 2023 Mar; 372():128672. PubMed ID: 36702324 [TBL] [Abstract][Full Text] [Related]
12. Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain. Saito Y; Ishii Y; Hayashi H; Imao Y; Akashi T; Yoshikawa K; Noguchi Y; Soeda S; Yoshida M; Niwa M; Hosoda J; Shimomura K Appl Environ Microbiol; 1997 Feb; 63(2):454-60. PubMed ID: 9023923 [TBL] [Abstract][Full Text] [Related]
13. [Production of vitamin C precursor--2-keto-L-gulonic acid from D-sorbitol by mixed culture of microorganisms]. Yin G; Lin W; Qiao C; Ye Q Wei Sheng Wu Xue Bao; 2001 Dec; 41(6):709-15. PubMed ID: 12552828 [TBL] [Abstract][Full Text] [Related]
14. Production of 2-keto-L-gulonic acid by metabolically engineered Escherichia coli. Zeng W; Wang P; Li N; Li J; Chen J; Zhou J Bioresour Technol; 2020 Dec; 318():124069. PubMed ID: 32916460 [TBL] [Abstract][Full Text] [Related]
15. Cloning and nucleotide sequencing of the membrane-bound L-sorbosone dehydrogenase gene of Acetobacter liquefaciens IFO 12258 and its expression in Gluconobacter oxydans. Shinjoh M; Tomiyama N; Asakura A; Hoshino T Appl Environ Microbiol; 1995 Feb; 61(2):413-20. PubMed ID: 7574579 [TBL] [Abstract][Full Text] [Related]
16. 5-Keto-D-fructose production from sugar alcohol by isolated wild strain Adachi O; Nguyen TM; Hours RA; Kataoka N; Matsushita K; Akakabe Y; Yakushi T Biosci Biotechnol Biochem; 2020 Aug; 84(8):1745-1747. PubMed ID: 32427050 [TBL] [Abstract][Full Text] [Related]
17. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans. Li K; Mao X; Liu L; Lin J; Sun M; Wei D; Yang S Microb Cell Fact; 2016 Jul; 15(1):121. PubMed ID: 27392695 [TBL] [Abstract][Full Text] [Related]
18. Comparative analysis of L-sorbose dehydrogenase by docking strategy for 2-keto-L-gulonic acid production in Ketogulonicigenium vulgare and Bacillus endophyticus consortium. Chen S; Jia N; Ding MZ; Yuan YJ J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1507-1516. PubMed ID: 27565673 [TBL] [Abstract][Full Text] [Related]
19. Engineering Gluconbacter oxydans with efficient co-utilization of glucose and sorbitol for one-step biosynthesis of 2-keto-L-gulonic. Li G; Wang X; Zeng W; Qin Z; Li J; Chen J; Zhou J Bioresour Technol; 2024 Aug; 406():131098. PubMed ID: 38986886 [TBL] [Abstract][Full Text] [Related]
20. [Fitness analysis between the L-sorbosone dehydrogenase modules and Ketogulonigenium vulgare chassis]. Chen S; Jia N; Ding M; Yuan Y Sheng Wu Gong Cheng Xue Bao; 2016 Sep; 32(9):1224-1232. PubMed ID: 29022323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]