These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Accelerating atomistic simulations with piecewise machine-learned Zhang Y; Hu C; Jiang B Phys Chem Chem Phys; 2021 Jan; 23(3):1815-1821. PubMed ID: 33236743 [TBL] [Abstract][Full Text] [Related]
6. Constructing and Evaluating Machine-Learned Interatomic Potentials for Li-Based Disordered Rocksalts. Choyal V; Sagar N; Sai Gautam G J Chem Theory Comput; 2024 Jun; 20(11):4844-4856. PubMed ID: 38787289 [TBL] [Abstract][Full Text] [Related]
7. Machine-Learned Potentials by Active Learning from Organic Crystal Structure Prediction Landscapes. Butler PWV; Hafizi R; Day GM J Phys Chem A; 2024 Feb; 128(5):945-957. PubMed ID: 38277275 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamic and Transport Properties of LiF and FLiBe Molten Salts with Deep Learning Potentials. Rodriguez A; Lam S; Hu M ACS Appl Mater Interfaces; 2021 Nov; 13(46):55367-55379. PubMed ID: 34767334 [TBL] [Abstract][Full Text] [Related]
9. A dual-cutoff machine-learned potential for condensed organic systems obtained Kahle L; Minisini B; Bui T; First JT; Buda C; Goldman T; Wimmer E Phys Chem Chem Phys; 2024 Aug; 26(34):22665-22680. PubMed ID: 39158948 [TBL] [Abstract][Full Text] [Related]
10. Quasi-Classical Trajectory Calculation of Rate Constants Using an Ab Initio Trained Machine Learning Model (aML-MD) with Multifidelity Data. Shi Z; Lele AD; Jasper AW; Klippenstein SJ; Ju Y J Phys Chem A; 2024 May; 128(17):3449-3457. PubMed ID: 38642065 [TBL] [Abstract][Full Text] [Related]
11. Hyperactive learning for data-driven interatomic potentials. van der Oord C; Sachs M; Kovács DP; Ortner C; Csányi G NPJ Comput Mater; 2023; 9(1):168. PubMed ID: 38666057 [TBL] [Abstract][Full Text] [Related]
12. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Batzner S; Musaelian A; Sun L; Geiger M; Mailoa JP; Kornbluth M; Molinari N; Smidt TE; Kozinsky B Nat Commun; 2022 May; 13(1):2453. PubMed ID: 35508450 [TBL] [Abstract][Full Text] [Related]
13. A machine learning potential for simulating infrared spectra of nanosilicate clusters. Tang Z; Bromley ST; Hammer B J Chem Phys; 2023 Jun; 158(22):. PubMed ID: 37290080 [TBL] [Abstract][Full Text] [Related]
14. Gaussian approximation potentials for accurate thermal properties of two-dimensional materials. Kocabaş T; Keçeli M; Vázquez-Mayagoitia Á; Sevik C Nanoscale; 2023 May; 15(19):8772-8780. PubMed ID: 37098822 [TBL] [Abstract][Full Text] [Related]
16. Committee neural network potentials control generalization errors and enable active learning. Schran C; Brezina K; Marsalek O J Chem Phys; 2020 Sep; 153(10):104105. PubMed ID: 32933264 [TBL] [Abstract][Full Text] [Related]
17. Ab Initio Calculations of Free Energy of Activation at Multiple Electronic Structure Levels Made Affordable: An Effective Combination of Perturbation Theory and Machine Learning. Bučko T; Gešvandtnerová M; Rocca D J Chem Theory Comput; 2020 Oct; 16(10):6049-6060. PubMed ID: 32786917 [TBL] [Abstract][Full Text] [Related]
18. DeePKS + ABACUS as a Bridge between Expensive Quantum Mechanical Models and Machine Learning Potentials. Li W; Ou Q; Chen Y; Cao Y; Liu R; Zhang C; Zheng D; Cai C; Wu X; Wang H; Chen M; Zhang L J Phys Chem A; 2022 Dec; 126(49):9154-9164. PubMed ID: 36455227 [TBL] [Abstract][Full Text] [Related]
19. Harnessing machine learning for efficient large-scale interatomic potential for sildenafil and pharmaceuticals containing H, C, N, O, and S. Nikidis E; Kyriakopoulos N; Tohid R; Kachrimanis K; Kioseoglou J Nanoscale; 2024 Oct; 16(38):18014-18026. PubMed ID: 39252581 [TBL] [Abstract][Full Text] [Related]
20. Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels. Dral PO; Owens A; Yurchenko SN; Thiel W J Chem Phys; 2017 Jun; 146(24):244108. PubMed ID: 28668062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]