These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 38701537)
61. The first brain: Species comparisons and evolutionary implications for the enteric and central nervous systems. Furness JB; Stebbing MJ Neurogastroenterol Motil; 2018 Feb; 30(2):. PubMed ID: 29024273 [TBL] [Abstract][Full Text] [Related]
62. Preparation and use of wireless reprogrammable multilateral optogenetic devices for behavioral neuroscience. Yang Y; Wu M; Wegener AJ; Vázquez-Guardado A; Efimov AI; Lie F; Wang T; Ma Y; Banks A; Li Z; Xie Z; Huang Y; Good CH; Kozorovitskiy Y; Rogers JA Nat Protoc; 2022 Apr; 17(4):1073-1096. PubMed ID: 35173306 [TBL] [Abstract][Full Text] [Related]
63. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices. Wang Y; Lin X; Chen X; Chen X; Xu Z; Zhang W; Liao Q; Duan X; Wang X; Liu M; Wang F; He J; Shi P Biomaterials; 2017 Oct; 142():136-148. PubMed ID: 28735174 [TBL] [Abstract][Full Text] [Related]
64. Flexible Near-Field Wireless Optoelectronics as Subdermal Implants for Broad Applications in Optogenetics. Shin G; Gomez AM; Al-Hasani R; Jeong YR; Kim J; Xie Z; Banks A; Lee SM; Han SY; Yoo CJ; Lee JL; Lee SH; Kurniawan J; Tureb J; Guo Z; Yoon J; Park SI; Bang SY; Nam Y; Walicki MC; Samineni VK; Mickle AD; Lee K; Heo SY; McCall JG; Pan T; Wang L; Feng X; Kim TI; Kim JK; Li Y; Huang Y; Gereau RW; Ha JS; Bruchas MR; Rogers JA Neuron; 2017 Feb; 93(3):509-521.e3. PubMed ID: 28132830 [TBL] [Abstract][Full Text] [Related]
65. Simultaneous optical and electrical in vivo analysis of the enteric nervous system. Rakhilin N; Barth B; Choi J; Muñoz NL; Kulkarni S; Jones JS; Small DM; Cheng YT; Cao Y; LaVinka C; Kan E; Dong X; Spencer M; Pasricha P; Nishimura N; Shen X Nat Commun; 2016 Jun; 7():11800. PubMed ID: 27270085 [TBL] [Abstract][Full Text] [Related]
66. [Unique characteristics of "the second brain" - The enteric nervous system]. Li JH; Duan R; Li L; Wood JD; Wang XY; Shu Y; Wang GD Sheng Li Xue Bao; 2020 Jun; 72(3):382-390. PubMed ID: 32572435 [TBL] [Abstract][Full Text] [Related]
67. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Lu L; Gutruf P; Xia L; Bhatti DL; Wang X; Vazquez-Guardado A; Ning X; Shen X; Sang T; Ma R; Pakeltis G; Sobczak G; Zhang H; Seo DO; Xue M; Yin L; Chanda D; Sheng X; Bruchas MR; Rogers JA Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1374-E1383. PubMed ID: 29378934 [TBL] [Abstract][Full Text] [Related]
68. Proteolipid protein 1 is involved in the regulation of intestinal motility and barrier function in the mouse. Woods C; Flockton AR; Wallace LE; Keenan CM; Macklin WB; Sharkey KA; Belkind-Gerson J Am J Physiol Gastrointest Liver Physiol; 2023 Feb; 324(2):G115-G130. PubMed ID: 36511517 [TBL] [Abstract][Full Text] [Related]
69. New Concepts of the Interplay Between the Gut Microbiota and the Enteric Nervous System in the Control of Motility. Vicentini FA; Fahlman T; Raptis SG; Wallace LE; Hirota SA; Sharkey KA Adv Exp Med Biol; 2022; 1383():55-69. PubMed ID: 36587146 [TBL] [Abstract][Full Text] [Related]
70. Robust, wireless gastric optogenetic implants for the study of peripheral pathways and applications in obesity Kim WS; Hong S; Park SI Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5742-5746. PubMed ID: 34892424 [TBL] [Abstract][Full Text] [Related]
71. Wireless opto-electro neural interface for experiments with small freely behaving animals. Jia Y; Khan W; Lee B; Fan B; Madi F; Weber A; Li W; Ghovanloo M J Neural Eng; 2018 Aug; 15(4):046032. PubMed ID: 29799437 [TBL] [Abstract][Full Text] [Related]
72. Insights on gastrointestinal motility through the use of optogenetic sensors and actuators. Drumm BT; Cobine CA; Baker SA J Physiol; 2022 Jul; 600(13):3031-3052. PubMed ID: 35596741 [TBL] [Abstract][Full Text] [Related]
73. Construction of a Flexible Optogenetic Device for Multisite and Multiregional Optical Stimulation Through Flexible µ-LED Displays on the Cerebral Cortex. Shang X; Ling W; Chen Y; Li C; Huang X Small; 2023 Sep; 19(39):e2302241. PubMed ID: 37260144 [TBL] [Abstract][Full Text] [Related]
74. The Gut and Nonmotor Symptoms in Parkinson's Disease. Klingelhoefer L; Reichmann H Int Rev Neurobiol; 2017; 134():787-809. PubMed ID: 28805583 [TBL] [Abstract][Full Text] [Related]
75. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Park SI; Brenner DS; Shin G; Morgan CD; Copits BA; Chung HU; Pullen MY; Noh KN; Davidson S; Oh SJ; Yoon J; Jang KI; Samineni VK; Norman M; Grajales-Reyes JG; Vogt SK; Sundaram SS; Wilson KM; Ha JS; Xu R; Pan T; Kim TI; Huang Y; Montana MC; Golden JP; Bruchas MR; Gereau RW; Rogers JA Nat Biotechnol; 2015 Dec; 33(12):1280-1286. PubMed ID: 26551059 [TBL] [Abstract][Full Text] [Related]
76. The Brain-Gut-Microbiotal Axis: A framework for understanding functional GI illness and their therapeutic interventions. Tait C; Sayuk GS Eur J Intern Med; 2021 Feb; 84():1-9. PubMed ID: 33423906 [TBL] [Abstract][Full Text] [Related]
77. Examining enteric nervous system function in rat and mouse: an interspecies comparison of colonic motility. Yip JLK; Balasuriya GK; Spencer SJ; Hill-Yardin EL Am J Physiol Gastrointest Liver Physiol; 2022 Nov; 323(5):G477-G487. PubMed ID: 36126271 [TBL] [Abstract][Full Text] [Related]
78. Neuronal Differentiation in Schwann Cell Lineage Underlies Postnatal Neurogenesis in the Enteric Nervous System. Uesaka T; Nagashimada M; Enomoto H J Neurosci; 2015 Jul; 35(27):9879-88. PubMed ID: 26156989 [TBL] [Abstract][Full Text] [Related]
79. An implantable device for wireless monitoring of diverse physio-behavioral characteristics in freely behaving small animals and interacting groups. Ouyang W; Kilner KJ; Xavier RMP; Liu Y; Lu Y; Feller SM; Pitts KM; Wu M; Ausra J; Jones I; Wu Y; Luan H; Trueb J; Higbee-Dempsey EM; Stepien I; Ghoreishi-Haack N; Haney CR; Li H; Kozorovitskiy Y; Heshmati M; Banks AR; Golden SA; Good CH; Rogers JA Neuron; 2024 Jun; 112(11):1764-1777.e5. PubMed ID: 38537641 [TBL] [Abstract][Full Text] [Related]
80. MicroRNA 375 mediates palmitate-induced enteric neuronal damage and high-fat diet-induced delayed intestinal transit in mice. Nezami BG; Mwangi SM; Lee JE; Jeppsson S; Anitha M; Yarandi SS; Farris AB; Srinivasan S Gastroenterology; 2014 Feb; 146(2):473-83.e3. PubMed ID: 24507550 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]