BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38701699)

  • 1. Integration of multi-omics data for survival prediction of lung adenocarcinoma.
    Guo D; Wang Y; Chen J; Liu X
    Comput Methods Programs Biomed; 2024 Jun; 250():108192. PubMed ID: 38701699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictions of the dysregulated competing endogenous RNA signature involved in the progression of human lung adenocarcinoma.
    Yang D; He Y; Wu B; Liu R; Wang N; Wang T; Luo Y; Li Y; Liu Y
    Cancer Biomark; 2020; 29(3):399-416. PubMed ID: 32741804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential Prognostic Biomarkers of Lung Adenocarcinoma Based on Bioinformatic Analysis.
    Hou J; Yao C
    Biomed Res Int; 2021; 2021():8859996. PubMed ID: 33511215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microarray analysis of the expression profile of immune-related gene in rapid recurrence early-stage lung adenocarcinoma.
    Liu J; Yang X; Zhang L; Yang B; Rao W; Li M; Dai N; Yang Y; Qian C; Zhang L; Xiao H; Wang D
    J Cancer Res Clin Oncol; 2020 Sep; 146(9):2299-2310. PubMed ID: 32556504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive analysis of TPX2-related ceRNA network as prognostic biomarkers in lung adenocarcinoma.
    Huo C; Zhang MY; Li R; Zhou XJ; Liu TT; Li JP; Liu X; Qu YQ
    Int J Med Sci; 2020; 17(16):2427-2439. PubMed ID: 33029085
    [No Abstract]   [Full Text] [Related]  

  • 6. Immune landscape and a novel immunotherapy-related gene signature associated with clinical outcome in early-stage lung adenocarcinoma.
    Bao X; Shi R; Zhao T; Wang Y
    J Mol Med (Berl); 2020 Jun; 98(6):805-818. PubMed ID: 32333046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonnegative matrix factorization-based bioinformatics analysis reveals that TPX2 and SELENBP1 are two predictors of the inner sub-consensuses of lung adenocarcinoma.
    Wang H; Wang X; Xu L; Cao H; Zhang J
    Cancer Med; 2021 Dec; 10(24):9058-9077. PubMed ID: 34734491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential Genes Associated with the Survival of Lung Adenocarcinoma Were Identified by Methylation.
    Shen Z; He C; Chen H; Xiao L; Jin Y; Huang S
    Comput Math Methods Med; 2020; 2020():7103412. PubMed ID: 34007304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A large cohort study identifying a novel prognosis prediction model for lung adenocarcinoma through machine learning strategies.
    Li Y; Ge D; Gu J; Xu F; Zhu Q; Lu C
    BMC Cancer; 2019 Sep; 19(1):886. PubMed ID: 31488089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prognostic value and immune infiltration of a novel stromal/immune score-related P2RY12 in lung adenocarcinoma microenvironment.
    Yu L; Cao S; Li J; Han B; Zhong H; Zhong R
    Int Immunopharmacol; 2021 Sep; 98():107734. PubMed ID: 34175738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-expression network analysis identified KIF2C in association with progression and prognosis in lung adenocarcinoma.
    Bai Y; Xiong L; Zhu M; Yang Z; Zhao J; Tang H
    Cancer Biomark; 2019; 24(3):371-382. PubMed ID: 30883337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel ferroptosis-related genes model for prognosis prediction of lung adenocarcinoma.
    Li F; Ge D; Sun SL
    BMC Pulm Med; 2021 Jul; 21(1):229. PubMed ID: 34256754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic Effects of Different Levels of Genomic Data for the Staging of Lung Adenocarcinoma: An Illustrative Study.
    Li Y; Mansmann U; Du S; Hornung R
    Genes (Basel); 2021 Nov; 12(12):. PubMed ID: 34946821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematical identifications of prognostic meaningful lung adenocarcinoma subtypes and the underlying mutational and expressional characters.
    Lv Z; Lei T
    BMC Cancer; 2020 Jan; 20(1):56. PubMed ID: 31987030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Recurrence-Specific Gene-Based Prognosis Prediction Model for Lung Adenocarcinoma through Machine Learning Algorithm.
    Xu S; Zhou J; Liu K; Chen Z; He Z
    Biomed Res Int; 2020; 2020():9124792. PubMed ID: 33224985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A ten-gene signature-based risk assessment model predicts the prognosis of lung adenocarcinoma.
    Jiang H; Xu S; Chen C
    BMC Cancer; 2020 Aug; 20(1):782. PubMed ID: 32819300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weighted gene coexpression network analysis identifies hub genes related to KRAS mutant lung adenocarcinoma.
    Dai D; Shi R; Han S; Jin H; Wang X
    Medicine (Baltimore); 2020 Aug; 99(32):e21478. PubMed ID: 32769881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The construction and analysis of ceRNA network and patterns of immune infiltration in lung adenocarcinoma.
    Li J; Liu W; Dong X; Dai Y; Chen S; Zhao E; Liu Y; Bao H
    BMC Cancer; 2021 Nov; 21(1):1228. PubMed ID: 34781924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of hub driving genes and regulators of lung adenocarcinoma based on the gene Co-expression network.
    Xu Z; Wu Z; Xu J; Zhang J; Yu B
    Biosci Rep; 2020 Apr; 40(4):. PubMed ID: 32196072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Expression of
    Deng H; Huang Y; Wang L; Chen M
    Biomed Res Int; 2020; 2020():2071593. PubMed ID: 33134373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.