BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38701787)

  • 1. Visual boundary cues suffice to anchor place and grid cells in virtual reality.
    Yang X; Cacucci F; Burgess N; Wills TJ; Chen G
    Curr Biol; 2024 May; 34(10):2256-2264.e3. PubMed ID: 38701787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial cell firing during virtual navigation of open arenas by head-restrained mice.
    Chen G; King JA; Lu Y; Cacucci F; Burgess N
    Elife; 2018 Jun; 7():. PubMed ID: 29911974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling place cells and grid cells in multi-compartment environments: Entorhinal-hippocampal loop as a multisensory integration circuit.
    Li T; Arleo A; Sheynikhovich D
    Neural Netw; 2020 Jan; 121():37-51. PubMed ID: 31526953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cohesiveness of spatial and directional representations recorded from neural ensembles in the anterior thalamus, parasubiculum, medial entorhinal cortex, and hippocampus.
    Hargreaves EL; Yoganarasimha D; Knierim JJ
    Hippocampus; 2007; 17(9):826-41. PubMed ID: 17598156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recalibration of path integration in hippocampal place cells.
    Jayakumar RP; Madhav MS; Savelli F; Blair HT; Cowan NJ; Knierim JJ
    Nature; 2019 Feb; 566(7745):533-537. PubMed ID: 30742074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of boundary removal on the spatial representations of the medial entorhinal cortex.
    Savelli F; Yoganarasimha D; Knierim JJ
    Hippocampus; 2008; 18(12):1270-82. PubMed ID: 19021262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system.
    Aronov D; Tank DW
    Neuron; 2014 Oct; 84(2):442-56. PubMed ID: 25374363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential influences of environment and self-motion on place and grid cell firing.
    Chen G; Lu Y; King JA; Cacucci F; Burgess N
    Nat Commun; 2019 Feb; 10(1):630. PubMed ID: 30733457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered neural odometry in the vertical dimension.
    Casali G; Bush D; Jeffery K
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4631-4636. PubMed ID: 30770450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential Representation of Landmark and Self-Motion Information along the CA1 Radial Axis: Self-Motion Generated Place Fields Shift toward Landmarks during Septal Inactivation.
    Fattahi M; Sharif F; Geiller T; Royer S
    J Neurosci; 2018 Jul; 38(30):6766-6778. PubMed ID: 29954846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Objects and landmarks: hippocampal place cells respond differently to manipulations of visual cues depending on size, perspective, and experience.
    Scaplen KM; Gulati AA; Heimer-McGinn VL; Burwell RD
    Hippocampus; 2014 Nov; 24(11):1287-99. PubMed ID: 25045010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental boundaries as a mechanism for correcting and anchoring spatial maps.
    Giocomo LM
    J Physiol; 2016 Nov; 594(22):6501-6511. PubMed ID: 26563618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absence of Visual Input Results in the Disruption of Grid Cell Firing in the Mouse.
    Chen G; Manson D; Cacucci F; Wills TJ
    Curr Biol; 2016 Sep; 26(17):2335-42. PubMed ID: 27498565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation.
    Campbell MG; Ocko SA; Mallory CS; Low IIC; Ganguli S; Giocomo LM
    Nat Neurosci; 2018 Aug; 21(8):1096-1106. PubMed ID: 30038279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hippocampal Place Cells Encode Local Surface-Texture Boundaries.
    Wang CH; Monaco JD; Knierim JJ
    Curr Biol; 2020 Apr; 30(8):1397-1409.e7. PubMed ID: 32109393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The postrhinal cortex is not necessary for landmark control in rat head direction cells.
    Peck JR; Taube JS
    Hippocampus; 2017 Feb; 27(2):156-168. PubMed ID: 27860052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hippocampus Maintains a Coherent Map Under Reward Feature-Landmark Cue Conflict.
    Nair IR; Bhasin G; Roy D
    Front Neural Circuits; 2022; 16():878046. PubMed ID: 35558552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental deformations dynamically shift human spatial memory.
    Keinath AT; Rechnitz O; Balasubramanian V; Epstein RA
    Hippocampus; 2021 Jan; 31(1):89-101. PubMed ID: 32941670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influences of vestibular and visual motion information on the spatial firing patterns of hippocampal place cells.
    Sharp PE; Blair HT; Etkin D; Tzanetos DB
    J Neurosci; 1995 Jan; 15(1 Pt 1):173-89. PubMed ID: 7823128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased Variability and Asymmetric Expansion of the Hippocampal Spatial Representation in a Distal Cue-Dependent Memory Task.
    Park SB; Lee I
    Hippocampus; 2016 Aug; 26(8):1033-50. PubMed ID: 26972836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.