BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38701983)

  • 1. Systems metabolic engineering of Corynebacterium glutamicum to assimilate formic acid for biomass accumulation and succinic acid production.
    Li K; Zhang X; Li C; Liang YC; Zhao XQ; Liu CG; Sinskey AJ; Bai FW
    Bioresour Technol; 2024 Jun; 402():130774. PubMed ID: 38701983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate.
    Litsanov B; Brocker M; Bott M
    Appl Environ Microbiol; 2012 May; 78(9):3325-37. PubMed ID: 22389371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum.
    Wang C; Zhang H; Cai H; Zhou Z; Chen Y; Chen Y; Ouyang P
    Appl Biochem Biotechnol; 2014 Jan; 172(1):340-50. PubMed ID: 24078255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formic acid as a secondary substrate for succinic acid production by metabolically engineered Mannheimia succiniciproducens.
    Ahn JH; Bang J; Kim WJ; Lee SY
    Biotechnol Bioeng; 2017 Dec; 114(12):2837-2847. PubMed ID: 28926680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-isopropanol production in Corynebacterium glutamicum: Metabolic redesign of synthetic bypasses and two-stage fermentation with gas stripping.
    Ko YJ; Cha J; Jeong WY; Lee ME; Cho BH; Nisha B; Jeong HJ; Park SE; Han SO
    Bioresour Technol; 2022 Jun; 354():127171. PubMed ID: 35472638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced succinic acid production in Corynebacterium glutamicum with increasing the available NADH supply and glucose consumption rate by decreasing H(+)-ATPase activity.
    Xu H; Zhou Z; Wang C; Chen Z; Cai H
    Biotechnol Lett; 2016 Jul; 38(7):1181-6. PubMed ID: 27053082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Corynebacterium glutamicum for efficient production of succinic acid from corn stover pretreated by concentrated-alkali under steam-assistant conditions.
    Li K; Li C; Zhao XQ; Liu CG; Bai FW
    Bioresour Technol; 2023 Jun; 378():128991. PubMed ID: 37003455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum.
    Zhou Z; Wang C; Chen Y; Zhang K; Xu H; Cai H; Chen Z
    Biotechnol Prog; 2015; 31(1):12-9. PubMed ID: 25311136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive laboratory evolution accelerated glutarate production by Corynebacterium glutamicum.
    Prell C; Busche T; Rückert C; Nolte L; Brandenbusch C; Wendisch VF
    Microb Cell Fact; 2021 May; 20(1):97. PubMed ID: 33971881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system.
    Zhu N; Xia H; Yang J; Zhao X; Chen T
    Biotechnol Lett; 2014 Mar; 36(3):553-60. PubMed ID: 24129953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirement of de novo synthesis of pyruvate carboxylase in long-term succinic acid production in Corynebacterium glutamicum.
    Uchikura H; Ninomiya K; Takahashi K; Tsuge Y
    Appl Microbiol Biotechnol; 2020 May; 104(10):4313-4320. PubMed ID: 32232530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain.
    Okino S; Noburyu R; Suda M; Jojima T; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):459-64. PubMed ID: 18777022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum.
    Chung SC; Park JS; Yun J; Park JH
    Metab Eng; 2017 Mar; 40():157-164. PubMed ID: 28232033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Succinate production from CO₂-grown microalgal biomass as carbon source using engineered Corynebacterium glutamicum through consolidated bioprocessing.
    Lee J; Sim SJ; Bott M; Um Y; Oh MK; Woo HM
    Sci Rep; 2014 Jul; 4():5819. PubMed ID: 25056811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum.
    Wang C; Zhou Z; Cai H; Chen Z; Xu H
    J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1115-1126. PubMed ID: 28303352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources.
    Tsuge Y; Hasunuma T; Kondo A
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):375-89. PubMed ID: 25424693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum.
    Chen T; Zhu N; Xia H
    Bioresour Technol; 2014 Jan; 151():411-4. PubMed ID: 24169202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered Assimilation of Exogenous and Endogenous Formate in Escherichia coli.
    Yishai O; Goldbach L; Tenenboim H; Lindner SN; Bar-Even A
    ACS Synth Biol; 2017 Sep; 6(9):1722-1731. PubMed ID: 28558223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutaric acid production by systems metabolic engineering of an l-lysine-overproducing
    Han T; Kim GB; Lee SY
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30328-30334. PubMed ID: 33199604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.