BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38702020)

  • 1. HMG-B transcription factors of unicellular opisthokonts and their relatedness to the Sox-Tcf/Lef-Mata proteins of Metazoa and fungi.
    Pozdnyakov IR; Selyuk AO; Kalashnikova VA; Karpov SA
    Gene; 2024 Aug; 921():148520. PubMed ID: 38702020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular phylogeny of unikonts: new insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts.
    Paps J; Medina-Chacón LA; Marshall W; Suga H; Ruiz-Trillo I
    Protist; 2013 Jan; 164(1):2-12. PubMed ID: 23083534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. To the Origin of Fungi: Analysis of MFS Transporters of First Assembled
    Pozdnyakov IR; Potapenko EV; Nassonova ES; Babenko VV; Boldyreva DI; Tcvetkova VS; Karpov SA
    J Fungi (Basel); 2023 Oct; 9(10):. PubMed ID: 37888277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenomics Supports the Monophyly of Aphelids and Fungi and Identifies New Molecular Synapomorphies.
    Galindo LJ; Torruella G; López-García P; Ciobanu M; Gutiérrez-Preciado A; Karpov SA; Moreira D
    Syst Biol; 2023 Jun; 72(3):505-515. PubMed ID: 35900180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells.
    Sinner D; Kordich JJ; Spence JR; Opoka R; Rankin S; Lin SC; Jonatan D; Zorn AM; Wells JM
    Mol Cell Biol; 2007 Nov; 27(22):7802-15. PubMed ID: 17875931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SOX transcription factors direct TCF-independent WNT/β-catenin responsive transcription to govern cell fate in human pluripotent stem cells.
    Mukherjee S; Luedeke DM; McCoy L; Iwafuchi M; Zorn AM
    Cell Rep; 2022 Aug; 40(8):111247. PubMed ID: 36001974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ancient complexity, opisthokont plasticity, and discovery of the 11th subfamily of Arf GAP proteins.
    Schlacht A; Mowbrey K; Elias M; Kahn RA; Dacks JB
    Traffic; 2013 Jun; 14(6):636-49. PubMed ID: 23433073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversification pattern of the HMG and SOX family members during evolution.
    Soullier S; Jay P; Poulat F; Vanacker JM; Berta P; Laudet V
    J Mol Evol; 1999 May; 48(5):517-27. PubMed ID: 10198118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular evolution of Sry and Sox gene.
    Nagai K
    Gene; 2001 May; 270(1-2):161-9. PubMed ID: 11404013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental survey meta-analysis reveals hidden diversity among unicellular opisthokonts.
    del Campo J; Ruiz-Trillo I
    Mol Biol Evol; 2013 Apr; 30(4):802-5. PubMed ID: 23329685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lef/Tcf-dependent Wnt/beta-catenin signaling during Xenopus axis specification.
    Geng X; Xiao L; Lin GF; Hu R; Wang JH; Rupp RA; Ding X
    FEBS Lett; 2003 Jul; 547(1-3):1-6. PubMed ID: 12860376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multigene phylogeny of choanozoa and the origin of animals.
    Shalchian-Tabrizi K; Minge MA; Espelund M; Orr R; Ruden T; Jakobsen KS; Cavalier-Smith T
    PLoS One; 2008 May; 3(5):e2098. PubMed ID: 18461162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa.
    Cavalier-Smith T; Chao EE; Snell EA; Berney C; Fiore-Donno AM; Lewis R
    Mol Phylogenet Evol; 2014 Dec; 81():71-85. PubMed ID: 25152275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains.
    Torruella G; Derelle R; Paps J; Lang BF; Roger AJ; Shalchian-Tabrizi K; Ruiz-Trillo I
    Mol Biol Evol; 2012 Feb; 29(2):531-44. PubMed ID: 21771718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acquisition of SOX transcription factor specificity through protein-protein interaction, modulation of Wnt signalling and post-translational modification.
    Bernard P; Harley VR
    Int J Biochem Cell Biol; 2010 Mar; 42(3):400-10. PubMed ID: 19854293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolutionary diversification of LSF and Grainyhead transcription factors preceded the radiation of basal animal lineages.
    Traylor-Knowles N; Hansen U; Dubuc TQ; Martindale MQ; Kaufman L; Finnerty JR
    BMC Evol Biol; 2010 Apr; 10():101. PubMed ID: 20398424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and characterization of the LEF/TCF gene family in grass carp (Ctenopharyngodon idella) and their expression profiles in response to grass carp reovirus infection.
    Zhu D; Huang R; Chen L; Fu P; Luo L; He L; Li Y; Liao L; Zhu Z; Wang Y
    Fish Shellfish Immunol; 2019 Mar; 86():335-346. PubMed ID: 30500548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogeny of choanozoa, apusozoa, and other protozoa and early eukaryote megaevolution.
    Cavalier-Smith T; Chao EE
    J Mol Evol; 2003 May; 56(5):540-63. PubMed ID: 12698292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct regulation of the Xenopus engrailed-2 promoter by the Wnt signaling pathway, and a molecular screen for Wnt-responsive genes, confirm a role for Wnt signaling during neural patterning in Xenopus.
    McGrew LL; Takemaru K; Bates R; Moon RT
    Mech Dev; 1999 Sep; 87(1-2):21-32. PubMed ID: 10495268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ancyromonadida: a new phylogenetic lineage among the protozoa closely related to the common ancestor of metazoans, fungi, and choanoflagellates (Opisthokonta).
    Atkins MS; McArthur AG; Teske AP
    J Mol Evol; 2000 Sep; 51(3):278-85. PubMed ID: 11029072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.