These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 38702035)

  • 1. AKIML
    Sun T; Yue X; Zhang G; Lin Q; Chen X; Huang T; Li X; Liu W; Tao Z
    Clin Chim Acta; 2024 Jun; 559():119705. PubMed ID: 38702035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel real-time model for predicting acute kidney injury in critically ill patients within 12 hours.
    Sun T; Yue X; Chen X; Huang T; Gu S; Chen Y; Yu Y; Qian F; Han C; Pan X; Lu X; Li L; Ji Y; Wu K; Li H; Zhang G; Li X; Luo J; Huang M; Cui W; Zhang M; Tao Z
    Nephrol Dial Transplant; 2024 Jul; ():. PubMed ID: 39020258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Mortality and Major Adverse Kidney Events in Critically Ill Patients With Acute Kidney Injury.
    Neyra JA; Ortiz-Soriano V; Liu LJ; Smith TD; Li X; Xie D; Adams-Huet B; Moe OW; Toto RD; Chen J
    Am J Kidney Dis; 2023 Jan; 81(1):36-47. PubMed ID: 35868537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretable machine learning model for predicting acute kidney injury in critically ill patients.
    Li X; Wang P; Zhu Y; Zhao W; Pan H; Wang D
    BMC Med Inform Decis Mak; 2024 May; 24(1):148. PubMed ID: 38822285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction and validation of prognostic models in critically Ill patients with sepsis-associated acute kidney injury: interpretable machine learning approach.
    Fan Z; Jiang J; Xiao C; Chen Y; Xia Q; Wang J; Fang M; Wu Z; Chen F
    J Transl Med; 2023 Jun; 21(1):406. PubMed ID: 37349774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study.
    Li M; Han S; Liang F; Hu C; Zhang B; Hou Q; Zhao S
    J Med Internet Res; 2024 May; 26():e51354. PubMed ID: 38691403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction and evaluation of a mortality prediction model for patients with acute kidney injury undergoing continuous renal replacement therapy based on machine learning algorithms.
    Wang Y; Sun X; Lu J; Zhong L; Yang Z
    Ann Med; 2024 Dec; 56(1):2388709. PubMed ID: 39155811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Acute Kidney Injury after Extracorporeal Cardiac Surgery (CSA-AKI) by Machine Learning Algorithms.
    Tong Y; Niu X; Liu F
    Heart Surg Forum; 2023 Oct; 26(5):E537-E551. PubMed ID: 37920093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomarker Predictors of Adverse Acute Kidney Injury Outcomes in Critically Ill Patients: The Dublin Acute Biomarker Group Evaluation Study.
    McMahon BA; Galligan M; Redahan L; Martin T; Meaney E; Cotter EJ; Murphy N; Hannon C; Doran P; Marsh B; Nichol A; Murray PT
    Am J Nephrol; 2019; 50(1):19-28. PubMed ID: 31203271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of clinically available renal biomarkers in critically ill adults: a prospective multicenter observational study.
    Deng Y; Chi R; Chen S; Ye H; Yuan J; Wang L; Zhai Y; Gao L; Zhang D; Hu L; Lv B; Long Y; Sun C; Yang X; Zou X; Chen C
    Crit Care; 2017 Mar; 21(1):46. PubMed ID: 28264714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms].
    Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Comparison of machine learning method and logistic regression model in prediction of acute kidney injury in severely burned patients].
    Tang CQ; Li JQ; Xu DY; Liu XB; Hou WJ; Lyu KY; Xiao SC; Xia ZF
    Zhonghua Shao Shang Za Zhi; 2018 Jun; 34(6):343-348. PubMed ID: 29961290
    [No Abstract]   [Full Text] [Related]  

  • 13. Incorporating intraoperative blood pressure time-series variables to assist in prediction of acute kidney injury after type a acute aortic dissection repair: an interpretable machine learning model.
    Dai A; Zhou Z; Jiang F; Guo Y; Asante DO; Feng Y; Huang K; Chen C; Shi H; Si Y; Zou J
    Ann Med; 2023; 55(2):2266458. PubMed ID: 37813109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Construction of a risk predictive model of acute kidney injury based on urinary tissue inhibitor of metalloproteinase 2 and insulin-like growth factor-binding protein 7 and its early predictive value in critically ill patients].
    Wang H; Mou H; Xu X; Zheng R
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):387-391. PubMed ID: 38813633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning-Based Prediction of Acute Kidney Injury Following Pediatric Cardiac Surgery: Model Development and Validation Study.
    Luo XQ; Kang YX; Duan SB; Yan P; Song GB; Zhang NY; Yang SK; Li JX; Zhang H
    J Med Internet Res; 2023 Jan; 25():e41142. PubMed ID: 36603200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Comparison of machine learning and Logistic regression model in predicting acute kidney injury after cardiac surgery: data analysis based on MIMIC-III database].
    Xiong W; Zhang L; She K; Xu G; Bai S; Liu X
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2022 Nov; 34(11):1188-1193. PubMed ID: 36567564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning for early discrimination between transient and persistent acute kidney injury in critically ill patients with sepsis.
    Luo XQ; Yan P; Zhang NY; Luo B; Wang M; Deng YH; Wu T; Wu X; Liu Q; Wang HS; Wang L; Kang YX; Duan SB
    Sci Rep; 2021 Oct; 11(1):20269. PubMed ID: 34642418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning for the prediction of all-cause mortality in patients with sepsis-associated acute kidney injury during hospitalization.
    Zhou H; Liu L; Zhao Q; Jin X; Peng Z; Wang W; Huang L; Xie Y; Xu H; Tao L; Xiao X; Nie W; Liu F; Li L; Yuan Q
    Front Immunol; 2023; 14():1140755. PubMed ID: 37077912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple machine learning model for the prediction of acute kidney injury following noncardiac surgery in geriatric patients: a prospective cohort study.
    Peng X; Zhu T; Chen Q; Zhang Y; Zhou R; Li K; Hao X
    BMC Geriatr; 2024 Jun; 24(1):549. PubMed ID: 38918723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning for the prediction of acute kidney injury in patients with sepsis.
    Yue S; Li S; Huang X; Liu J; Hou X; Zhao Y; Niu D; Wang Y; Tan W; Wu J
    J Transl Med; 2022 May; 20(1):215. PubMed ID: 35562803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.