BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38702373)

  • 1. Maize leaf disease recognition using PRF-SVM integration: a breakthrough technique.
    Bachhal P; Kukreja V; Ahuja S; Lilhore UK; Simaiya S; Bijalwan A; Alroobaea R; Algarni S
    Sci Rep; 2024 May; 14(1):10219. PubMed ID: 38702373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Alfalfa Leaf Diseases Using Image Recognition Technology.
    Qin F; Liu D; Sun B; Ruan L; Ma Z; Wang H
    PLoS One; 2016; 11(12):e0168274. PubMed ID: 27977767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NORTHERN LEAF BLIGHT HELMINTHOSPORIUM TURCICUM ON MAIZE IN LATVIA.
    Treikale O; Javoisha B; Pugacheva E; Vigule Z; Feodorova-Fedotova L
    Commun Agric Appl Biol Sci; 2014; 79(3):481-5. PubMed ID: 26080484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel method for maize leaf disease classification using the RGB-D post-segmentation image data.
    Nan F; Song Y; Yu X; Nie C; Liu Y; Bai Y; Zou D; Wang C; Yin D; Yang W; Jin X
    Front Plant Sci; 2023; 14():1268015. PubMed ID: 37822341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Identification of Northern Leaf Blight-Infected Maize Plants from Field Imagery Using Deep Learning.
    DeChant C; Wiesner-Hanks T; Chen S; Stewart EL; Yosinski J; Gore MA; Nelson RJ; Lipson H
    Phytopathology; 2017 Nov; 107(11):1426-1432. PubMed ID: 28653579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indirect selection for resistance to ear rot and leaf diseases in maize lines using biplots.
    Pereira GS; Camargos RB; Balestre M; Von Pinho RG; C Melo WM
    Genet Mol Res; 2015 Sep; 14(3):11052-62. PubMed ID: 26400335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a U-Net Neural Network to the
    Holan KL; White CH; Whitham SA
    Phytopathology; 2024 May; 114(5):990-999. PubMed ID: 38281155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of soybean frogeye leaf spot disease using leaf hyperspectral reflectance.
    Liu S; Yu H; Sui Y; Zhou H; Zhang J; Kong L; Dang J; Zhang L
    PLoS One; 2021; 16(9):e0257008. PubMed ID: 34478465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Efficient Segmentation and Classification System in Medical Images Using Intuitionist Possibilistic Fuzzy C-Mean Clustering and Fuzzy SVM Algorithm.
    Chowdhary CL; Mittal M; P K; Pattanaik PA; Marszalek Z
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32668793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Few-shot cotton leaf spots disease classification based on metric learning.
    Liang X
    Plant Methods; 2021 Nov; 17(1):114. PubMed ID: 34749780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A lightweight convolutional neural network for recognition of severity stages of maydis leaf blight disease of maize.
    Haque MA; Marwaha S; Arora A; Deb CK; Misra T; Nigam S; Hooda KS
    Front Plant Sci; 2022; 13():1077568. PubMed ID: 36643296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and validation of miRNAs associated with the resistance of maize (Zea mays L.) to Exserohilum turcicum.
    Wu F; Shu J; Jin W
    PLoS One; 2014; 9(1):e87251. PubMed ID: 24489881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-Seq analysis of resistant and susceptible sub-tropical maize lines reveals a role for kauralexins in resistance to grey leaf spot disease, caused by Cercospora zeina.
    Meyer J; Berger DK; Christensen SA; Murray SL
    BMC Plant Biol; 2017 Nov; 17(1):197. PubMed ID: 29132306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncovering the Infection Strategy of
    Caldwell DL; da Silva CR; McCoy AG; Avila H; Bonkowski JC; Chilvers MI; Helm M; Telenko DEP; Iyer-Pascuzzi AS
    Phytopathology; 2024 May; 114(5):1075-1087. PubMed ID: 38079374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and comparative analysis of the genome of Puccinia sorghi Schwein, the causal agent of maize common rust.
    Rochi L; Diéguez MJ; Burguener G; Darino MA; Pergolesi MF; Ingala LR; Cuyeu AR; Turjanski A; Kreff ED; Sacco F
    Fungal Genet Biol; 2018 Mar; 112():31-39. PubMed ID: 27746189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of Maize Phenology in Sentinel Images with Machine Learning.
    Murguia-Cozar A; Macedo-Cruz A; Fernandez-Reynoso DS; Salgado Transito JA
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The durable wheat disease resistance gene Lr34 confers common rust and northern corn leaf blight resistance in maize.
    Sucher J; Boni R; Yang P; Rogowsky P; Büchner H; Kastner C; Kumlehn J; Krattinger SG; Keller B
    Plant Biotechnol J; 2017 Apr; 15(4):489-496. PubMed ID: 27734576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Cotton Leaf Lesions Using Deep Learning Techniques.
    Caldeira RF; Santiago WE; Teruel B
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34063578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An advanced approach for fig leaf disease detection and classification: Leveraging image processing and enhanced support vector machine methodology.
    Alzoubi S; Jawarneh M; Bsoul Q; Keshta I; Soni M; Khan MA
    Open Life Sci; 2023; 18(1):20220764. PubMed ID: 38027230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic analysis of maydis leaf blight resistance in subtropical maize (
    Jeevan B; Gogoi R; Sharma D; Manjunatha C; Rajashekara H; Ram D; Mishra KK; Mallikarjuna MG
    J Genet; 2020; 99():. PubMed ID: 33361641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.