BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38702624)

  • 21. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.
    Liu C; Wang X; Genchev GZ; Lu H
    Methods; 2017 Jul; 124():100-107. PubMed ID: 28627406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Cancer Survival Prediction Method Based on Graph Convolutional Network.
    Wang C; Guo J; Zhao N; Liu Y; Liu X; Liu G; Guo M
    IEEE Trans Nanobioscience; 2020 Jan; 19(1):117-126. PubMed ID: 31443039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cancer Classification with a Cost-Sensitive Naive Bayes Stacking Ensemble.
    Xiong Y; Ye M; Wu C
    Comput Math Methods Med; 2021; 2021():5556992. PubMed ID: 33986823
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bayesian variable selection for parametric survival model with applications to cancer omics data.
    Duan W; Zhang R; Zhao Y; Shen S; Wei Y; Chen F; Christiani DC
    Hum Genomics; 2018 Nov; 12(1):49. PubMed ID: 30400837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis.
    Zhang Y; Xiong S; Wang Z; Liu Y; Luo H; Li B; Zou Q
    Methods; 2023 May; 213():1-9. PubMed ID: 36933628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonidentical twins: Comparison of frequentist and Bayesian lasso for Cox models.
    Zucknick M; Saadati M; Benner A
    Biom J; 2015 Nov; 57(6):959-81. PubMed ID: 26417963
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Geometric graph neural networks on multi-omics data to predict cancer survival outcomes.
    Zhu J; Oh JH; Simhal AK; Elkin R; Norton L; Deasy JO; Tannenbaum A
    Comput Biol Med; 2023 Sep; 163():107117. PubMed ID: 37329617
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models.
    Yousefi S; Amrollahi F; Amgad M; Dong C; Lewis JE; Song C; Gutman DA; Halani SH; Velazquez Vega JE; Brat DJ; Cooper LAD
    Sci Rep; 2017 Sep; 7(1):11707. PubMed ID: 28916782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bayesian parametric models for survival prediction in medical applications.
    Paolucci I; Lin YM; Albuquerque Marques Silva J; Brock KK; Odisio BC
    BMC Med Res Methodol; 2023 Oct; 23(1):250. PubMed ID: 37884857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of censoring on learning Bayesian networks in survival modelling.
    Stajduhar I; Dalbelo-Basić B; Bogunović N
    Artif Intell Med; 2009 Nov; 47(3):199-217. PubMed ID: 19833488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Developing stacking ensemble models for multivariate contamination detection in water distribution systems.
    Li Z; Zhang C; Liu H; Zhang C; Zhao M; Gong Q; Fu G
    Sci Total Environ; 2022 Jul; 828():154284. PubMed ID: 35247409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pathway aggregation for survival prediction via multiple kernel learning.
    Sinnott JA; Cai T
    Stat Med; 2018 Jul; 37(16):2501-2515. PubMed ID: 29664143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pan-cancer evaluation of gene expression and somatic alteration data for cancer prognosis prediction.
    Zheng X; Amos CI; Frost HR
    BMC Cancer; 2021 Sep; 21(1):1053. PubMed ID: 34563154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bayesian Hyper-LASSO Classification for Feature Selection with Application to Endometrial Cancer RNA-seq Data.
    Jiang L; Greenwood CMT; Yao W; Li L
    Sci Rep; 2020 Jun; 10(1):9747. PubMed ID: 32546735
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prior knowledge-guided multilevel graph neural network for tumor risk prediction and interpretation via multi-omics data integration.
    Yan H; Weng D; Li D; Gu Y; Ma W; Liu Q
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38670157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interpretable deep neural network for cancer survival analysis by integrating genomic and clinical data.
    Hao J; Kim Y; Mallavarapu T; Oh JH; Kang M
    BMC Med Genomics; 2019 Dec; 12(Suppl 10):189. PubMed ID: 31865908
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Group Lasso Regularized Deep Learning for Cancer Prognosis from Multi-Omics and Clinical Features.
    Xie G; Dong C; Kong Y; Zhong JF; Li M; Wang K
    Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30901858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PCLasso: a protein complex-based, group lasso-Cox model for accurate prognosis and risk protein complex discovery.
    Wang W; Liu W
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34086850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep learning-based cancer survival prognosis from RNA-seq data: approaches and evaluations.
    Huang Z; Johnson TS; Han Z; Helm B; Cao S; Zhang C; Salama P; Rizkalla M; Yu CY; Cheng J; Xiang S; Zhan X; Zhang J; Huang K
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):41. PubMed ID: 32241264
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A penalized linear mixed model with generalized method of moments for prediction analysis on high-dimensional multi-omics data.
    Wang X; Wen Y
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35649346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.