BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38702624)

  • 41. Bayesian variable selection with graphical structure learning: Applications in integrative genomics.
    Kundu S; Cheng Y; Shin M; Manyam G; Mallick BK; Baladandayuthapani V
    PLoS One; 2018; 13(7):e0195070. PubMed ID: 30059495
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tutorial on survival modeling with applications to omics data.
    Zhao Z; Zobolas J; Zucknick M; Aittokallio T
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38445722
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Extend mixed models to multilayer neural networks for genomic prediction including intermediate omics data.
    Zhao T; Zeng J; Cheng H
    Genetics; 2022 May; 221(1):. PubMed ID: 35212766
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of influential observations in high-dimensional survival data through robust penalized Cox regression based on trimming.
    Sun H; Gao Q; Zhu G; Han C; Yan H; Wang T
    Math Biosci Eng; 2023 Jan; 20(3):5352-5378. PubMed ID: 36896549
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Framework for personalized prediction of treatment response in relapsing remitting multiple sclerosis.
    Stühler E; Braune S; Lionetto F; Heer Y; Jules E; Westermann C; Bergmann A; van Hövell P;
    BMC Med Res Methodol; 2020 Feb; 20(1):24. PubMed ID: 32028898
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data.
    Zhao X; Cheung LW
    BMC Bioinformatics; 2007 Feb; 8():67. PubMed ID: 17328811
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A supervised Bayesian factor model for the identification of multi-omics signatures.
    Gygi JP; Konstorum A; Pawar S; Aron E; Kleinstein SH; Guan L
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38603606
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computationally scalable regression modeling for ultrahigh-dimensional omics data with ParProx.
    Ko S; Li GX; Choi H; Won JH
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34254998
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A comparative analysis of methods for predicting clinical outcomes using high-dimensional genomic datasets.
    Jiang X; Cai B; Xue D; Lu X; Cooper GF; Neapolitan RE
    J Am Med Inform Assoc; 2014 Oct; 21(e2):e312-9. PubMed ID: 24737607
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gradient lasso for Cox proportional hazards model.
    Sohn I; Kim J; Jung SH; Park C
    Bioinformatics; 2009 Jul; 25(14):1775-81. PubMed ID: 19447787
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Simulation Study to Compare the Predictive Performance of Survival Neural Networks with Cox Models for Clinical Trial Data.
    Kantidakis G; Biganzoli E; Putter H; Fiocco M
    Comput Math Methods Med; 2021; 2021():2160322. PubMed ID: 34880930
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Novel Cox Proportional Hazards Model for High-Dimensional Genomic Data in Cancer Prognosis.
    Huang HH; Liang Y
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):1821-1830. PubMed ID: 31870990
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bayesian penalized cumulative logit model for high-dimensional data with an ordinal response.
    Zhang Y; Archer KJ
    Stat Med; 2021 Mar; 40(6):1453-1481. PubMed ID: 33336826
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of pathway and gene-level models for cancer prognosis prediction.
    Zheng X; Amos CI; Frost HR
    BMC Bioinformatics; 2020 Feb; 21(1):76. PubMed ID: 32111152
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Robust artificial neural network for reliability and sensitivity analyses of complex non-linear systems.
    Oparaji U; Sheu RJ; Bankhead M; Austin J; Patelli E
    Neural Netw; 2017 Dec; 96():80-90. PubMed ID: 28987979
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Robust estimation of the expected survival probabilities from high-dimensional Cox models with biomarker-by-treatment interactions in randomized clinical trials.
    Ternès N; Rotolo F; Michiels S
    BMC Med Res Methodol; 2017 May; 17(1):83. PubMed ID: 28532387
    [TBL] [Abstract][Full Text] [Related]  

  • 57. IPF-LASSO: Integrative
    Boulesteix AL; De Bin R; Jiang X; Fuchs M
    Comput Math Methods Med; 2017; 2017():7691937. PubMed ID: 28546826
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models.
    Okut H; Wu XL; Rosa GJ; Bauck S; Woodward BW; Schnabel RD; Taylor JF; Gianola D
    Genet Sel Evol; 2013 Sep; 45(1):34. PubMed ID: 24024641
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion.
    Cai B; Jiang X
    J Biomed Inform; 2014 Apr; 48():114-21. PubMed ID: 24361387
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Overlapping group screening for detection of gene-environment interactions with application to TCGA high-dimensional survival genomic data.
    Wang JH; Wang KH; Chen YH
    BMC Bioinformatics; 2022 May; 23(1):202. PubMed ID: 35637439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.