BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 38702793)

  • 1. A GMP-compliant manufacturing method for Wharton's jelly-derived mesenchymal stromal cells.
    Chu W; Zhang F; Zeng X; He F; Shang G; Guo T; Wang Q; Wu J; Li T; Zhong ZZ; Liang X; Hu J; Liu M
    Stem Cell Res Ther; 2024 May; 15(1):131. PubMed ID: 38702793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of Wharton's jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system.
    Cardoso TC; Ferrari HF; Garcia AF; Novais JB; Silva-Frade C; Ferrarezi MC; Andrade AL; Gameiro R
    BMC Biotechnol; 2012 May; 12():18. PubMed ID: 22559872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells.
    Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA
    Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the Optimal Manufacturing Protocols and Therapeutic Properties of Mesenchymal Stem/Stromal Cells Derived from Wharton's Jelly.
    Sypecka M; Bzinkowska A; Sulejczak D; Dabrowski F; Sarnowska A
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36614096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wharton's Jelly Derived-Mesenchymal Stem Cells: Isolation and Characterization.
    Ranjbaran H; Abediankenari S; Mohammadi M; Jafari N; Khalilian A; Rahmani Z; Momeninezhad Amiri M; Ebrahimi P
    Acta Med Iran; 2018 Jan; 56(1):28-33. PubMed ID: 29436792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesenchymal stem cells derived from Wharton's jelly: comparative phenotype analysis between tissue and in vitro expansion.
    Margossian T; Reppel L; Makdissy N; Stoltz JF; Bensoussan D; Huselstein C
    Biomed Mater Eng; 2012; 22(4):243-54. PubMed ID: 22785368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positive selection of Wharton's jelly-derived CD105(+) cells by MACS technique and their subsequent cultivation under suspension culture condition: A simple, versatile culturing method to enhance the multipotentiality of mesenchymal stem cells.
    Amiri F; Halabian R; Dehgan Harati M; Bahadori M; Mehdipour A; Mohammadi Roushandeh A; Habibi Roudkenar M
    Hematology; 2015 May; 20(4):208-16. PubMed ID: 25116042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of critical process parameters for expansion of clinical grade human Wharton's jelly-derived mesenchymal stromal cells in stirred-tank bioreactors.
    López-Fernández A; Garcia-Gragera V; Lecina M; Vives J
    Biotechnol J; 2024 Feb; 19(2):e2300381. PubMed ID: 38403461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are serum-free and xeno-free culture conditions ideal for large scale clinical grade expansion of Wharton's jelly derived mesenchymal stem cells? A comparative study.
    Swamynathan P; Venugopal P; Kannan S; Thej C; Kolkundar U; Bhagwat S; Ta M; Majumdar AS; Balasubramanian S
    Stem Cell Res Ther; 2014 Jul; 5(4):88. PubMed ID: 25069491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Platelet Lysate Supports Efficient Expansion and Stability of Wharton's Jelly Mesenchymal Stromal Cells via Active Uptake and Release of Soluble Regenerative Factors.
    Cañas-Arboleda M; Beltrán K; Medina C; Camacho B; Salguero G
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32877987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics and clinical applications of Wharton's jelly-derived mesenchymal stromal cells.
    Liau LL; Ruszymah BHI; Ng MH; Law JX
    Curr Res Transl Med; 2020 Jan; 68(1):5-16. PubMed ID: 31543433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparability exercise of critical quality attributes of clinical-grade human mesenchymal stromal cells from the Wharton's jelly: single-use stirred tank bioreactors versus planar culture systems.
    López-Fernández A; Codinach M; Coca MI; Prat-Vidal C; Castaño J; Torrents S; Aran G; Rodríguez L; Querol S; Vives J
    Cytotherapy; 2024 May; 26(5):418-426. PubMed ID: 37715777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compared to the amniotic membrane, Wharton's jelly may be a more suitable source of mesenchymal stem cells for cardiovascular tissue engineering and clinical regeneration.
    Pu L; Meng M; Wu J; Zhang J; Hou Z; Gao H; Xu H; Liu B; Tang W; Jiang L; Li Y
    Stem Cell Res Ther; 2017 Mar; 8(1):72. PubMed ID: 28320452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation method and xeno-free culture conditions influence multipotent differentiation capacity of human Wharton's jelly-derived mesenchymal stem cells.
    Corotchi MC; Popa MA; Remes A; Sima LE; Gussi I; Lupu Plesu M
    Stem Cell Res Ther; 2013 Jul; 4(4):81. PubMed ID: 23845279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wharton's Jelly Mesenchymal Stromal Cells from Human Umbilical Cord: a Close-up on Immunomodulatory Molecules Featured In Situ and In Vitro.
    Corsello T; Amico G; Corrao S; Anzalone R; Timoneri F; Lo Iacono M; Russo E; Spatola GF; Uzzo ML; Giuffrè M; Caprnda M; Kubatka P; Kruzliak P; Conaldi PG; La Rocca G
    Stem Cell Rev Rep; 2019 Dec; 15(6):900-918. PubMed ID: 31741193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freezing of Fresh Wharton's Jelly From Human Umbilical Cords Yields High Post-Thaw Mesenchymal Stem Cell Numbers for Cell-Based Therapies.
    Fong CY; Subramanian A; Biswas A; Bongso A
    J Cell Biochem; 2016 Apr; 117(4):815-27. PubMed ID: 26365815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Robust and Highly Efficient Approach for Isolation of Mesenchymal Stem Cells From Wharton's Jelly for Tissue Repair.
    Zheng S; Gao Y; Chen K; Liu Y; Xia N; Fang F
    Cell Transplant; 2022; 31():9636897221084354. PubMed ID: 35313748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene expression modifications in Wharton's Jelly mesenchymal stem cells promoted by prolonged in vitro culturing.
    Gatta V; D'Aurora M; Lanuti P; Pierdomenico L; Sperduti S; Palka G; Gesi M; Marchisio M; Miscia S; Stuppia L
    BMC Genomics; 2013 Sep; 14():635. PubMed ID: 24053474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaffold-free 3D culturing enhance pluripotency, immunomodulatory factors, and differentiation potential of Wharton's jelly-mesenchymal stem cells.
    Thakur G; Bok EY; Kim SB; Jo CH; Oh SJ; Baek JC; Park JE; Kang YH; Lee SL; Kumar R; Rho GJ
    Eur J Cell Biol; 2022; 101(3):151245. PubMed ID: 35667339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wharton's jelly mesenchymal stromal/stem cells derived under chemically defined animal product-free low oxygen conditions are rich in MSCA-1(+) subpopulation.
    Devito L; Badraiq H; Galleu A; Taheem DK; Codognotto S; Siow R; Khalaf Y; Briley A; Shennan A; Poston L; McGrath J; Gentleman E; Dazzi F; Ilic D
    Regen Med; 2014; 9(6):723-32. PubMed ID: 25431909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.