These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38702931)

  • 1. Concealing Organic Neuromorphic Devices with Neuronal-Inspired Supported Lipid Bilayers.
    Ausilio C; Lubrano C; Rana D; Matrone GM; Bruno U; Santoro F
    Adv Sci (Weinh); 2024 Jul; 11(27):e2305860. PubMed ID: 38702931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supported Lipid Bilayers Coupled to Organic Neuromorphic Devices Modulate Short-Term Plasticity in Biomimetic Synapses.
    Lubrano C; Bruno U; Ausilio C; Santoro F
    Adv Mater; 2022 Apr; 34(15):e2110194. PubMed ID: 35174916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.
    Lee Y; Lee TW
    Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electret-Based Organic Synaptic Transistor for Neuromorphic Computing.
    Yu R; Li E; Wu X; Yan Y; He W; He L; Chen J; Chen H; Guo T
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15446-15455. PubMed ID: 32153175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emulating the Signal Transmission in a Neural System Using Polymer Membranes.
    Kim D; Lee JS
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42308-42316. PubMed ID: 36069456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gate-Controlled Neuromorphic Functional Transition in an Electrochemical Graphene Transistor.
    Yu C; Li S; Pan Z; Liu Y; Wang Y; Zhou S; Gao Z; Tian H; Jiang K; Wang Y; Zhang J
    Nano Lett; 2024 Feb; 24(5):1620-1628. PubMed ID: 38277130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A MoS
    Wang S; Chen C; Yu Z; He Y; Chen X; Wan Q; Shi Y; Zhang DW; Zhou H; Wang X; Zhou P
    Adv Mater; 2019 Jan; 31(3):e1806227. PubMed ID: 30485567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Organic Flexible Artificial Bio-Synapses with Long-Term Plasticity for Neuromorphic Computing.
    Wang TY; He ZY; Chen L; Zhu H; Sun QQ; Ding SJ; Zhou P; Zhang DW
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Retina-Inspired Optoelectronic Synapse Using Quantum Dots for Neuromorphic Photostimulation of Neurons.
    Balamur R; Eren GO; Kaleli HN; Karatum O; Kaya L; Hasanreisoglu M; Nizamoglu S
    Adv Sci (Weinh); 2024 May; 11(20):e2306097. PubMed ID: 38514908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Retina-Inspired Optoelectronic Synapse Using Quantum Dots for Neuromorphic Photostimulation of Neurons.
    Balamur R; Eren GO; Kaleli HN; Karatum O; Kaya L; Hasanreisoglu M; Nizamoglu S
    Adv Sci (Weinh); 2024 May; 11(18):e2401753. PubMed ID: 38447181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optically Readable Organic Electrochemical Synaptic Transistors for Neuromorphic Photonic Image Processing.
    Xu Y; Shi Y; Qian C; Xie P; Jin C; Shi X; Zhang G; Liu W; Wan C; Ho JC; Sun J; Yang J
    Nano Lett; 2023 Jun; 23(11):5264-5271. PubMed ID: 37229610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modular organic neuromorphic spiking circuit for retina-inspired sensory coding and neurotransmitter-mediated neural pathways.
    Matrone GM; van Doremaele ERW; Surendran A; Laswick Z; Griggs S; Ye G; McCulloch I; Santoro F; Rivnay J; van de Burgt Y
    Nat Commun; 2024 Apr; 15(1):2868. PubMed ID: 38570478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional materials for synaptic electronics and neuromorphic systems.
    Wang S; Zhang DW; Zhou P
    Sci Bull (Beijing); 2019 Aug; 64(15):1056-1066. PubMed ID: 36659765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mimicking Photosynthesis with Electrode-Supported Lipid Nanoassemblies.
    Wang M; Zhan W
    Acc Chem Res; 2016 Nov; 49(11):2551-2559. PubMed ID: 27759390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Threshold-Tunable, Spike-Rate-Dependent Plasticity Originating from Interfacial Proton Gating for Pattern Learning and Memory.
    Ren ZY; Zhu LQ; Guo YB; Long TY; Yu F; Xiao H; Lu HL
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7833-7839. PubMed ID: 31961648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial Neuron and Synapse Devices Based on 2D Materials.
    Lee G; Baek JH; Ren F; Pearton SJ; Lee GH; Kim J
    Small; 2021 May; 17(20):e2100640. PubMed ID: 33817985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing.
    Choi S; Yang J; Wang G
    Adv Mater; 2020 Dec; 32(51):e2004659. PubMed ID: 33006204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-inspired multimodal learning with organic neuromorphic electronics for behavioral conditioning in robotics.
    Krauhausen I; Griggs S; McCulloch I; den Toonder JMJ; Gkoupidenis P; van de Burgt Y
    Nat Commun; 2024 Jun; 15(1):4765. PubMed ID: 38834541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emulation of Synaptic Plasticity on a Cobalt-Based Synaptic Transistor for Neuromorphic Computing.
    Monalisha P; Kumar APS; Wang XR; Piramanayagam SN
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11864-11872. PubMed ID: 35229606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid neuromorphic hardware with sparing 2D synapse and CMOS neuron for character recognition.
    Xue S; Wang S; Wu T; Di Z; Xu N; Sun Y; Zeng C; Ma S; Zhou P
    Sci Bull (Beijing); 2023 Oct; 68(20):2336-2343. PubMed ID: 37714804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.