These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38703001)

  • 21. Regulation of Resource Partitioning Coordinates Nitrogen and Rhizobia Responses and Autoregulation of Nodulation in Medicago truncatula.
    Lagunas B; Achom M; Bonyadi-Pour R; Pardal AJ; Richmond BL; Sergaki C; Vázquez S; Schäfer P; Ott S; Hammond J; Gifford ML
    Mol Plant; 2019 Jun; 12(6):833-846. PubMed ID: 30953787
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plant peptides govern terminal differentiation of bacteria in symbiosis.
    Van de Velde W; Zehirov G; Szatmari A; Debreczeny M; Ishihara H; Kevei Z; Farkas A; Mikulass K; Nagy A; Tiricz H; Satiat-Jeunemaître B; Alunni B; Bourge M; Kucho K; Abe M; Kereszt A; Maroti G; Uchiumi T; Kondorosi E; Mergaert P
    Science; 2010 Feb; 327(5969):1122-6. PubMed ID: 20185722
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rhizobium symbiosis modulates the accumulation of arsenic in Medicago truncatula via nitrogen and NRT3.1-like genes regulated by ABA and linalool.
    Ye L; Yang P; Zeng Y; Li C; Jian N; Wang R; Huang S; Yang R; Wei L; Zhao H; Zheng Q; Gao H; Liu J
    J Hazard Mater; 2021 Aug; 415():125611. PubMed ID: 33725554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rhizobium Lipo-chitooligosaccharide Signaling Triggers Accumulation of Cytokinins in Medicago truncatula Roots.
    van Zeijl A; Op den Camp RH; Deinum EE; Charnikhova T; Franssen H; Op den Camp HJ; Bouwmeester H; Kohlen W; Bisseling T; Geurts R
    Mol Plant; 2015 Aug; 8(8):1213-26. PubMed ID: 25804975
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Early Phosphorylated Protein 1 is required to activate the early rhizobial infection program.
    Ferrer-Orgaz S; Tiwari M; Isidra-Arellano MC; Pozas-Rodriguez EA; Vernié T; Rich MK; Mbengue M; Formey D; Delaux PM; Ané JM; Valdés-López O
    New Phytol; 2024 Feb; 241(3):962-968. PubMed ID: 38009302
    [No Abstract]   [Full Text] [Related]  

  • 26. The Medicago genome provides insight into the evolution of rhizobial symbioses.
    Young ND; Debellé F; Oldroyd GE; Geurts R; Cannon SB; Udvardi MK; Benedito VA; Mayer KF; Gouzy J; Schoof H; Van de Peer Y; Proost S; Cook DR; Meyers BC; Spannagl M; Cheung F; De Mita S; Krishnakumar V; Gundlach H; Zhou S; Mudge J; Bharti AK; Murray JD; Naoumkina MA; Rosen B; Silverstein KA; Tang H; Rombauts S; Zhao PX; Zhou P; Barbe V; Bardou P; Bechner M; Bellec A; Berger A; Bergès H; Bidwell S; Bisseling T; Choisne N; Couloux A; Denny R; Deshpande S; Dai X; Doyle JJ; Dudez AM; Farmer AD; Fouteau S; Franken C; Gibelin C; Gish J; Goldstein S; González AJ; Green PJ; Hallab A; Hartog M; Hua A; Humphray SJ; Jeong DH; Jing Y; Jöcker A; Kenton SM; Kim DJ; Klee K; Lai H; Lang C; Lin S; Macmil SL; Magdelenat G; Matthews L; McCorrison J; Monaghan EL; Mun JH; Najar FZ; Nicholson C; Noirot C; O'Bleness M; Paule CR; Poulain J; Prion F; Qin B; Qu C; Retzel EF; Riddle C; Sallet E; Samain S; Samson N; Sanders I; Saurat O; Scarpelli C; Schiex T; Segurens B; Severin AJ; Sherrier DJ; Shi R; Sims S; Singer SR; Sinharoy S; Sterck L; Viollet A; Wang BB; Wang K; Wang M; Wang X; Warfsmann J; Weissenbach J; White DD; White JD; Wiley GB; Wincker P; Xing Y; Yang L; Yao Z; Ying F; Zhai J; Zhou L; Zuber A; Dénarié J; Dixon RA; May GD; Schwartz DC; Rogers J; Quétier F; Town CD; Roe BA
    Nature; 2011 Nov; 480(7378):520-4. PubMed ID: 22089132
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Legume-rhizobial symbiosis: an anorexic model?
    Sprent JI; James EK
    New Phytol; 2008; 179(1):3-5. PubMed ID: 18557873
    [No Abstract]   [Full Text] [Related]  

  • 28. Intracellular infection by symbiotic bacteria requires the mitotic kinase AURORA1.
    Gao JP; Jiang S; Su Y; Xu P; Wang J; Liang W; Liu CW; Murray JD
    Proc Natl Acad Sci U S A; 2022 Oct; 119(43):e2202606119. PubMed ID: 36252014
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis.
    Zhang Q; Blaylock LA; Harrison MJ
    Plant Cell; 2010 May; 22(5):1483-97. PubMed ID: 20453115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation.
    Ivanov S; Fedorova EE; Limpens E; De Mita S; Genre A; Bonfante P; Bisseling T
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8316-21. PubMed ID: 22566631
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulatory patterns of a large family of defensin-like genes expressed in nodules of Medicago truncatula.
    Nallu S; Silverstein KA; Samac DA; Bucciarelli B; Vance CP; VandenBosch KA
    PLoS One; 2013; 8(4):e60355. PubMed ID: 23573247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization and expression analysis of Medicago truncatula ROP GTPase family during the early stage of symbiosis.
    Liu W; Chen AM; Luo L; Sun J; Cao LP; Yu GQ; Zhu JB; Wang YZ
    J Integr Plant Biol; 2010 Jul; 52(7):639-52. PubMed ID: 20590994
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Early stages of legume-rhizobia symbiosis are controlled by ABCG-mediated transport of active cytokinins.
    Jarzyniak K; Banasiak J; Jamruszka T; Pawela A; Di Donato M; Novák O; Geisler M; Jasiński M
    Nat Plants; 2021 Apr; 7(4):428-436. PubMed ID: 33753904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics.
    Bravo A; York T; Pumplin N; Mueller LA; Harrison MJ
    Nat Plants; 2016 Jan; 2():15208. PubMed ID: 27249190
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytokinin responses counterpoint auxin signaling during rhizobial infection.
    Liu CW; Breakspear A; Roy S; Murray JD
    Plant Signal Behav; 2015; 10(6):e1019982. PubMed ID: 26176899
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The CCAAT box-binding transcription factor NF-YA1 controls rhizobial infection.
    Laporte P; Lepage A; Fournier J; Catrice O; Moreau S; Jardinaud MF; Mun JH; Larrainzar E; Cook DR; Gamas P; Niebel A
    J Exp Bot; 2014 Feb; 65(2):481-94. PubMed ID: 24319255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conservation in function of a SCAR/WAVE component during infection thread and root hair growth in Medicago truncatula.
    Miyahara A; Richens J; Starker C; Morieri G; Smith L; Long S; Downie JA; Oldroyd GE
    Mol Plant Microbe Interact; 2010 Dec; 23(12):1553-62. PubMed ID: 20731530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contribution of NFP LysM domains to the recognition of Nod factors during the Medicago truncatula/Sinorhizobium meliloti symbiosis.
    Bensmihen S; de Billy F; Gough C
    PLoS One; 2011; 6(11):e26114. PubMed ID: 22087221
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of a symbiotic receptor through gene duplications in the legume-rhizobium mutualism.
    De Mita S; Streng A; Bisseling T; Geurts R
    New Phytol; 2014 Feb; 201(3):961-972. PubMed ID: 24400903
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling.
    Smit P; Limpens E; Geurts R; Fedorova E; Dolgikh E; Gough C; Bisseling T
    Plant Physiol; 2007 Sep; 145(1):183-91. PubMed ID: 17586690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.