These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38703385)

  • 1. Converting Carbon Dioxide into Carbon Nanotubes by Reacting with Ethane.
    Yuan Y; Huang E; Hwang S; Liu P; Chen JG
    Angew Chem Int Ed Engl; 2024 Jul; 63(29):e202404047. PubMed ID: 38703385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulating carbon dioxide activation on carbon nanotube immobilized salophen complexes by varying metal centers for efficient electrocatalytic reduction.
    Cui X; Liu S; Zhao L; Yu J; Ling S; Zhao Y; Wang J; Qin W; Mao X; Zhang J
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1827-1836. PubMed ID: 34742091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bimetallic-Derived Catalytic Structures for CO
    Xie Z; Chen JG
    Acc Chem Res; 2023 Sep; 56(18):2447-2458. PubMed ID: 37647142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth, new growth, and amplification of carbon nanotubes as a function of catalyst composition.
    Crouse CA; Maruyama B; Colorado R; Back T; Barron AR
    J Am Chem Soc; 2008 Jun; 130(25):7946-54. PubMed ID: 18507464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO
    Zhang X; Jiang Y; Kong G; Liu Q; Zhang G; Wang K; Cao T; Cheng Q; Zhang Z; Ji G; Han L
    J Hazard Mater; 2023 Oct; 460():132500. PubMed ID: 37708645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Small-Diameter Carbon Nanotubes Synthesized from Captured Carbon Dioxide: Critical Role of Catalyst Coarsening.
    Douglas A; Carter R; Li M; Pint CL
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19010-19018. PubMed ID: 29715008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of nickel-based electrocatalyst size on electrochemical carbon dioxide reduction: A density functional theory study.
    Wang F; Meng Y; Chen X; Zhang L; Li G; Shen Z; Wang Y; Cao Y
    J Colloid Interface Sci; 2022 Jun; 615():587-596. PubMed ID: 35152078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the Coordination Structures of Transition Metals on Nitrogen-Doped Carbon Nanotubes for Electrochemical CO
    Cao Y; Meng Y; Wu Y; Shen Z; Xia Q; Huang H; Lang JP; Gu H; Wang Y; Li X
    Inorg Chem; 2022 Nov; 61(47):18957-18969. PubMed ID: 36374189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of high-performance nickel-based catalysts for production of hydrogen and carbon nanotubes from biogas.
    Saconsint S; Sae-Tang N; Srifa A; Koo-Amornpattana W; Assabumrungrat S; Fukuhara C; Ratchahat S
    Sci Rep; 2022 Sep; 12(1):15195. PubMed ID: 36071147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing Ultralong Carbon Nanotube Growth from Methane over Mono- and Bi-Metallic Iron Chloride Catalysts.
    Yick T; Gangoli VS; Orbaek White A
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation of CO
    Nunthakitgoson W; Rodaum C; Pornsetmetakul P; Wattanakit C; Wattana P; Thivasasith A
    Chempluschem; 2024 Feb; 89(2):e202300345. PubMed ID: 37876027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(ionic liquid)-coated hydroxy-functionalized carbon nanotube nanoarchitectures with boosted catalytic performance for carbon dioxide cycloaddition.
    Wan YL; Zhang J; Wang L; Lei YZ; Wen LL
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):844-856. PubMed ID: 37769363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gram-scale synthesis of single-atom metal-N-CNT catalysts for highly efficient CO
    Sun Q; Ren W; Zhao Y; Zhao C
    Chem Commun (Camb); 2021 Feb; 57(12):1514-1517. PubMed ID: 33443272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO
    Afandi NS; Mohammadi M; Ichikawa S; Mohamed AR
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):43011-43027. PubMed ID: 32725565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-controlled large-diameter and few-walled carbon nanotube catalysts for oxygen reduction.
    Wang X; Li Q; Pan H; Lin Y; Ke Y; Sheng H; Swihart MT; Wu G
    Nanoscale; 2015 Dec; 7(47):20290-8. PubMed ID: 26579622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nickel-based cerium zirconate inorganic complex structures for CO
    Martín-Espejo JL; Merkouri LP; Gándara-Loe J; Odriozola JA; Reina TR; Pastor-Pérez L
    J Environ Sci (China); 2024 Jun; 140():12-23. PubMed ID: 38331494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ni Nanoclusters Anchored on Ni-N-C Sites for CO
    Song Y; Mao J; Zhu C; Li S; Li G; Dong X; Jiang Z; Chen W; Wei W
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):10785-10794. PubMed ID: 36802488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing CO and H
    Al-Shafei E; Aljishi M; Alasseel A; Al-ShaikhAli AH; Albahar M
    ACS Omega; 2024 Apr; 9(15):17646-17654. PubMed ID: 38645309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Review on Bimetallic Nickel-Based Catalysts for CO
    Bian Z; Das S; Wai MH; Hongmanorom P; Kawi S
    Chemphyschem; 2017 Nov; 18(22):3117-3134. PubMed ID: 28710875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ exsolution of Fe-Ni alloy catalysts for H2 and carbon nanotube production from microwave plasma-initiated decomposition of plastic wastes.
    Zhang P; Wu M; Liang C; Luo D; Li B; Ma J
    J Hazard Mater; 2023 Mar; 445():130609. PubMed ID: 37056000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.