These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38703421)

  • 1. Long-term causal effects estimation via latent surrogates representation learning.
    Cai R; Chen W; Yang Z; Wan S; Zheng C; Yang X; Guo J
    Neural Netw; 2024 Aug; 176():106336. PubMed ID: 38703421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variational Temporal Deconfounder for Individualized Treatment Effect Estimation with Longitudinal Observational Data.
    Feng Z; Prosperi M; Guo Y; Bian J
    Res Sq; 2023 Feb; ():. PubMed ID: 36798248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An algorithm for direct causal learning of influences on patient outcomes.
    Rathnam C; Lee S; Jiang X
    Artif Intell Med; 2017 Jan; 75():1-15. PubMed ID: 28363452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical and Self-Attended Sequence Autoencoder.
    Chien JT; Wang CW
    IEEE Trans Pattern Anal Mach Intell; 2022 Sep; 44(9):4975-4986. PubMed ID: 33755556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning end-to-end patient representations through self-supervised covariate balancing for causal treatment effect estimation.
    Tesei G; Giampanis S; Shi J; Norgeot B
    J Biomed Inform; 2023 Apr; 140():104339. PubMed ID: 36940895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Causality in linear nongaussian acyclic models in the presence of latent gaussian confounders.
    Chen Z; Chan L
    Neural Comput; 2013 Jun; 25(6):1605-41. PubMed ID: 23517099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do-calculus enables estimation of causal effects in partially observed biomolecular pathways.
    Mohammad-Taheri S; Zucker J; Hoyt CT; Sachs K; Tewari V; Ness R; Vitek O
    Bioinformatics; 2022 Jun; 38(Suppl 1):i350-i358. PubMed ID: 35758817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards an Effective Intrusion Detection Model Using Focal Loss Variational Autoencoder for Internet of Things (IoT).
    Khanam S; Ahmedy I; Idris MYI; Jaward MH
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MGLNN: Semi-supervised learning via Multiple Graph Cooperative Learning Neural Networks.
    Jiang B; Chen S; Wang B; Luo B
    Neural Netw; 2022 Sep; 153():204-214. PubMed ID: 35750007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Causal Discovery in Linear Non-Gaussian Acyclic Model With Multiple Latent Confounders.
    Chen W; Cai R; Zhang K; Hao Z
    IEEE Trans Neural Netw Learn Syst; 2022 Jul; 33(7):2816-2827. PubMed ID: 33417571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propensity Weighted federated learning for treatment effect estimation in distributed imbalanced environments.
    Almodóvar A; Parras J; Zazo S
    Comput Biol Med; 2024 Aug; 178():108779. PubMed ID: 38943946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing a novel causal inference algorithm for personalized biomedical causal graph learning using meta machine learning.
    Wu H; Shi W; Wang MD
    BMC Med Inform Decis Mak; 2024 May; 24(1):137. PubMed ID: 38802809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using machine learning as a surrogate model for agent-based simulations.
    Angione C; Silverman E; Yaneske E
    PLoS One; 2022; 17(2):e0263150. PubMed ID: 35143521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disentangled representation for sequential treatment effect estimation.
    Chu J; Zhang Y; Huang F; Si L; Huang S; Huang Z
    Comput Methods Programs Biomed; 2022 Nov; 226():107175. PubMed ID: 36242866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DR-VIDAL - Doubly Robust Variational Information-theoretic Deep Adversarial Learning for Counterfactual Prediction and Treatment Effect Estimation on Real World Data.
    Ghosh S; Feng Z; Bian J; Butler K; Prosperi M
    AMIA Annu Symp Proc; 2022; 2022():485-494. PubMed ID: 37128454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing frequency-domain causality in multivariate time series.
    Faes L; Porta A; Nollo G
    IEEE Trans Biomed Eng; 2010 Aug; 57(8):1897-906. PubMed ID: 20176533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Representation learning via Dual-Autoencoder for recommendation.
    Zhuang F; Zhang Z; Qian M; Shi C; Xie X; He Q
    Neural Netw; 2017 Jun; 90():83-89. PubMed ID: 28410513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overcoming Long-Term Catastrophic Forgetting Through Adversarial Neural Pruning and Synaptic Consolidation.
    Peng J; Tang B; Jiang H; Li Z; Lei Y; Lin T; Li H
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4243-4256. PubMed ID: 33577459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of confounder selection and adjustment methods for estimating causal effects using large healthcare databases.
    Benasseur I; Talbot D; Durand M; Holbrook A; Matteau A; Potter BJ; Renoux C; Schnitzer ME; Tarride JÉ; Guertin JR
    Pharmacoepidemiol Drug Saf; 2022 Apr; 31(4):424-433. PubMed ID: 34953160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MetaCAE: Causal autoencoder with meta-knowledge transfer for brain effective connectivity estimation.
    Ji J; Zhang Z; Han L; Liu J
    Comput Biol Med; 2024 Mar; 170():107940. PubMed ID: 38232454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.