These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38703516)

  • 1. The extent to which healthy older adults rely on anticipatory control following simulated slip exposure.
    Swart SB; den Otter AR; Lamoth CJC
    J Biomech; 2024 May; 168():112122. PubMed ID: 38703516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposure to trips and slips with increasing unpredictability while walking can improve balance recovery responses with minimum predictive gait alterations.
    Okubo Y; Brodie MA; Sturnieks DL; Hicks C; Carter H; Toson B; Lord SR
    PLoS One; 2018; 13(9):e0202913. PubMed ID: 30226887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treadmill-gait slip training in community-dwelling older adults: mechanisms of immediate adaptation for a progressive ascending-mixed-intensity protocol.
    Wang Y; Wang S; Lee A; Pai YC; Bhatt T
    Exp Brain Res; 2019 Sep; 237(9):2305-2317. PubMed ID: 31286173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inefficient postural responses to unexpected slips during walking in older adults.
    Tang PF; Woollacott MH
    J Gerontol A Biol Sci Med Sci; 1998 Nov; 53(6):M471-80. PubMed ID: 9823752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age differences in anticipatory and executory mechanisms of gait initiation following unexpected balance perturbations.
    Laudani L; Rum L; Valle MS; Macaluso A; Vannozzi G; Casabona A
    Eur J Appl Physiol; 2021 Feb; 121(2):465-478. PubMed ID: 33106932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stepping asymmetry among individuals with unilateral transtibial limb loss might be functional in terms of gait stability.
    Hak L; van Dieën JH; van der Wurff P; Houdijk H
    Phys Ther; 2014 Oct; 94(10):1480-8. PubMed ID: 24903115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention and generalizability of balance recovery response adaptations from trip perturbations across the adult life span.
    König M; Epro G; Seeley J; Potthast W; Karamanidis K
    J Neurophysiol; 2019 Nov; 122(5):1884-1893. PubMed ID: 31509470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation to repeated gait-slip perturbations among individuals with multiple sclerosis.
    Yang F; Su X; Wen PS; Lazarus J
    Mult Scler Relat Disord; 2019 Oct; 35():135-141. PubMed ID: 31376685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-dependent tuning of balance control and aftereffects following optical flow perturbation training in older adults.
    Richards JT; Selgrade BP; Qiao M; Plummer P; Wikstrom EA; Franz JR
    J Neuroeng Rehabil; 2019 Jul; 16(1):81. PubMed ID: 31262319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pilot study of reactive balance training using trips and slips with increasing unpredictability in young and older adults: Biomechanical mechanisms, falls and clinical feasibility.
    Okubo Y; Brodie MA; Sturnieks DL; Hicks C; Lord SR
    Clin Biomech (Bristol, Avon); 2019 Jul; 67():171-179. PubMed ID: 31153101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability against backward balance loss: Age-related modifications following slip-like perturbations of multiple amplitudes.
    Martelli D; Aprigliano F; Tropea P; Pasquini G; Micera S; Monaco V
    Gait Posture; 2017 Mar; 53():207-214. PubMed ID: 28208109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treadmill-based gait-slip training with reduced training volume could still prevent slip-related falls.
    Yang F; Cereceres P; Qiao M
    Gait Posture; 2018 Oct; 66():160-165. PubMed ID: 30195219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can higher training practice dosage with treadmill slip-perturbation necessarily reduce risk of falls following overground slip?
    Lee A; Bhatt T; Liu X; Wang Y; Pai YC
    Gait Posture; 2018 Mar; 61():387-392. PubMed ID: 29453101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalization of motor adaptation to repeated-slip perturbation across tasks.
    Wang TY; Bhatt T; Yang F; Pai YC
    Neuroscience; 2011 Apr; 180():85-95. PubMed ID: 21352898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive gait responses to awareness of an impending slip during treadmill walking.
    Yang F; Kim J; Munoz J
    Gait Posture; 2016 Oct; 50():175-179. PubMed ID: 27632061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two types of slip-induced falls among community dwelling older adults.
    Yang F; Espy D; Bhatt T; Pai YC
    J Biomech; 2012 Apr; 45(7):1259-64. PubMed ID: 22338614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing slip-like responses during gait using an entire support surface perturbation: Comparisons to previously established slip methods.
    Huntley AH; Rajachandrakumar R; Schinkel-Ivy A; Mansfield A
    Gait Posture; 2019 Mar; 69():130-135. PubMed ID: 30708096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aging effects on leg joint variability during walking with balance perturbations.
    Qiao M; Feld JA; Franz JR
    Gait Posture; 2018 May; 62():27-33. PubMed ID: 29510323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical Mechanisms of Improved Balance Recovery to Repeated Backward Slips Simulated by Treadmill Belt Accelerations in Young and Older Adults.
    Debelle H; Maganaris CN; O'Brien TD
    Front Sports Act Living; 2021; 3():708929. PubMed ID: 34622205
    [No Abstract]   [Full Text] [Related]  

  • 20. Gait stability in response to platform, belt, and sensory perturbations in young and older adults.
    Roeles S; Rowe PJ; Bruijn SM; Childs CR; Tarfali GD; Steenbrink F; Pijnappels M
    Med Biol Eng Comput; 2018 Dec; 56(12):2325-2335. PubMed ID: 29946955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.