These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38703632)

  • 21. Profiles of immune cell infiltration and immune-related genes in the tumor microenvironment of colorectal cancer.
    Ge P; Wang W; Li L; Zhang G; Gao Z; Tang Z; Dang X; Wu Y
    Biomed Pharmacother; 2019 Oct; 118():109228. PubMed ID: 31351430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elevated tumor-to-liver uptake ratio (TLR) from
    Huang J; Huang L; Zhou J; Duan Y; Zhang Z; Wang X; Huang P; Tan S; Hu P; Wang J; Huang M
    Eur J Nucl Med Mol Imaging; 2017 Nov; 44(12):1958-1968. PubMed ID: 28812134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prognostic Significance of Preoperative Fibrinogen-to-Prealbumin Ratio in Patients with Stage I-III Colorectal Cancer Undergoing Surgical Resection: A Retrospective Cohort Study.
    Hailun Xie ; Huang S; Yuan G; Tang S; Gan J
    Biomed Res Int; 2021; 2021():3905353. PubMed ID: 33521127
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Modified Tumor-Node-Metastasis Classification for Primary Operable Colorectal Cancer.
    Zhang C; Mei Z; Pei J; Abe M; Zeng X; Huang Q; Nishiyama K; Akimoto N; Haruki K; Nan H; Meyerhardt JA; Zhang R; Li X; Ogino S; Ugai T
    JNCI Cancer Spectr; 2021 Feb; 5(1):. PubMed ID: 33554032
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A prognostic mutation panel for predicting cancer recurrence in stages II and III colorectal cancer.
    Sho S; Court CM; Winograd P; Russell MM; Tomlinson JS
    J Surg Oncol; 2017 Dec; 116(8):996-1004. PubMed ID: 28767131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PPsNet: An improved deep learning model for microsatellite instability high prediction in colorectal cancer from whole slide images.
    Lou J; Xu J; Zhang Y; Sun Y; Fang A; Liu J; Mur LAJ; Ji B
    Comput Methods Programs Biomed; 2022 Oct; 225():107095. PubMed ID: 36057226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A computed tomography-based multitask deep learning model for predicting tumour stroma ratio and treatment outcomes in patients with colorectal cancer: a multicentre cohort study.
    Cui Y; Zhao K; Meng X; Mao Y; Han C; Shi Z; Yang X; Tong T; Wu L; Liu Z
    Int J Surg; 2024 May; 110(5):2845-2854. PubMed ID: 38348900
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Association of tumor budding with clinicopathological features and prognostic value in stage III-IV colorectal cancer.
    Luo YH; Yan ZC; Liu JY; Li XY; Yang M; Fan J; Huang B; Ma CG; Chang XN; Nie X
    World J Gastroenterol; 2024 Jan; 30(2):158-169. PubMed ID: 38312121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ColoGuideEx: a robust gene classifier specific for stage II colorectal cancer prognosis.
    Agesen TH; Sveen A; Merok MA; Lind GE; Nesbakken A; Skotheim RI; Lothe RA
    Gut; 2012 Nov; 61(11):1560-7. PubMed ID: 22213796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intravascular emboli relates to immunosuppressive tumor microenvironment and predicts prognosis in stage III colorectal cancer.
    Song X; Xie D; Tan F; Zhou Y; Li Y; Zhou Z; Pei Q; Pei H
    Aging (Albany NY); 2021 Aug; 13(16):20609-20628. PubMed ID: 34438367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development and validation of prognostic nomograms based on De Ritis ratio and clinicopathological features for patients with stage II/III colorectal cancer.
    Fu J; Du F; Tian T; Huang H; Zhang L; Li D; Liu Y; Zhang D; Gao L; Zheng T; Liu Y; Zhao Y
    BMC Cancer; 2023 Jul; 23(1):620. PubMed ID: 37400788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A clinical decision support system optimising adjuvant chemotherapy for colorectal cancers by integrating deep learning and pathological staging markers: a development and validation study.
    Kleppe A; Skrede OJ; De Raedt S; Hveem TS; Askautrud HA; Jacobsen JE; Church DN; Nesbakken A; Shepherd NA; Novelli M; Kerr R; Liestøl K; Kerr DJ; Danielsen HE
    Lancet Oncol; 2022 Sep; 23(9):1221-1232. PubMed ID: 35964620
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An immune, stroma, and epithelial-mesenchymal transition-related signature for predicting recurrence and chemotherapy benefit in stage II-III colorectal cancer.
    Cai D; Wang W; Zhong ME; Fan D; Liu X; Li CH; Huang ZP; Zhu Q; Lv MY; Hu C; Duan X; Wu XJ; Gao F
    Cancer Med; 2023 Apr; 12(7):8924-8936. PubMed ID: 36629124
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From slides to insights: Harnessing deep learning for prognostic survival prediction in human colorectal cancer histology.
    Verma J; Sandhu A; Popli R; Kumar R; Khullar V; Kansal I; Sharma A; Garg K; Kashyap N; Aurangzeb K
    Open Life Sci; 2023; 18(1):20220777. PubMed ID: 38152577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overexpression of G protein-coupled receptor 31 as a poor prognosticator in human colorectal cancer.
    Rong YM; Huang XM; Fan DJ; Lin XT; Zhang F; Hu JC; Tan YX; Chen X; Zou YF; Lan P
    World J Gastroenterol; 2018 Nov; 24(41):4679-4690. PubMed ID: 30416315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep learning can predict lymph node status directly from histology in colorectal cancer.
    Kiehl L; Kuntz S; Höhn J; Jutzi T; Krieghoff-Henning E; Kather JN; Holland-Letz T; Kopp-Schneider A; Chang-Claude J; Brobeil A; von Kalle C; Fröhling S; Alwers E; Brenner H; Hoffmeister M; Brinker TJ
    Eur J Cancer; 2021 Nov; 157():464-473. PubMed ID: 34649117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorylated p38, a negative prognostic biomarker, complements TNM staging prognostication in colorectal cancer.
    Fan XJ; Wan XB; Fu XH; Wu PH; Chen DK; Wang PN; Jiang L; Wang DH; Chen ZT; Huang Y; Wang JP; Wang L
    Tumour Biol; 2014 Oct; 35(10):10487-95. PubMed ID: 25056534
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptional intra-tumour heterogeneity predicted by deep learning in routine breast histopathology slides provides independent prognostic information.
    Wang Y; Ali MA; Vallon-Christersson J; Humphreys K; Hartman J; Rantalainen M
    Eur J Cancer; 2023 Sep; 191():112953. PubMed ID: 37494846
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial effects of infiltrating T cells on neighbouring cancer cells and prognosis in stage III CRC patients.
    Azimi M; Cho S; Bozkurt E; McDonough E; Kisakol B; Matveeva A; Salvucci M; Dussmann H; McDade S; Firat C; Urganci N; Shia J; Longley DB; Ginty F; Prehn JH
    J Pathol; 2024 Oct; 264(2):148-159. PubMed ID: 39092716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A nomogram-based immunoprofile predicts clinical outcomes for stage II and III human colorectal cancer.
    Wang L; Chang N; Wu L; Li J; Zhang L; Chen Y; Zhou Z; Hao J; Wang Q; Jiao S
    Mol Clin Oncol; 2021 Dec; 15(6):257. PubMed ID: 34712487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.