BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38703682)

  • 1. Doping heteroatoms to form multiple hydrogen bond sites for enhanced interfacial reconstruction and separations.
    Tian Y; He C; He L; Xu Z; Sui H; Li X
    J Hazard Mater; 2024 Jul; 472():134477. PubMed ID: 38703682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Demulsifier with Strong Hydrogen Bonding for Effective Breaking of Water-in-Heavy Oil Emulsions.
    Xia X; Ma J; Liu F; Cong H; Li X
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37834251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-modification of carboxylated polyether for enhanced room temperature demulsification of oil-water emulsions: Synthesis, performance and mechanisms.
    Zhou J; Zhang X; He L; Sui H; Li X
    J Hazard Mater; 2022 Oct; 439():129654. PubMed ID: 35908401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen bond recombination regulated by strongly electronegative functional groups in demulsifiers for efficient separation of oil-water emulsions.
    Tian Y; Qi Y; Chen S; Qiao Z; Han H; Chen Z; Wang H; Zhang Y; Chen H; Wang L; Gong X; Chen Y
    J Hazard Mater; 2024 Jan; 461():132525. PubMed ID: 37716267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Characterization of a Novel Multibranched Block Polyether Demulsifier by Polymerization.
    Wei L; Chao M; Dai X; Jia X; Geng X; Guo H
    ACS Omega; 2021 Apr; 6(15):10454-10461. PubMed ID: 34056198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detergency in spontaneously formed emulsions.
    Srivastava VK; Kini G; Rout D
    J Colloid Interface Sci; 2006 Dec; 304(1):214-21. PubMed ID: 16987522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical review of the development and demulsification processes applied for oil recovery from oil in water emulsions.
    Faisal W; Almomani F
    Chemosphere; 2022 Mar; 291(Pt 3):133099. PubMed ID: 34848221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Materials Science Perspective of Midstream Challenges in the Utilization of Heavy Crude Oil.
    Douglas LD; Rivera-Gonzalez N; Cool N; Bajpayee A; Udayakantha M; Liu GW; Anita ; Banerjee S
    ACS Omega; 2022 Jan; 7(2):1547-1574. PubMed ID: 35071852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dodecenylsuccinic anhydride-modified oxalate decarboxylase loaded with magnetic nano-Fe
    Hou N; Zhao X; Han Z; Jiang X; Fang Y; Chen Y; Li D
    Chemosphere; 2022 Dec; 308(Pt 3):136595. PubMed ID: 36167213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and demulsification performance of a novel low-temperature demulsifier based on trimethyl citrate.
    Shen L; Ai G; Liu H; Zhu L; Lai L; Yan X; Yu W; Mi Y
    J Hazard Mater; 2024 Jul; 472():134543. PubMed ID: 38718501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demulsification of Heavy Oil-in-Water Emulsion by a Novel Janus Graphene Oxide Nanosheet: Experiments and Molecular Dynamic Simulations.
    Xu Y; Wang Y; Wang T; Zhang L; Xu M; Jia H
    Molecules; 2022 Mar; 27(7):. PubMed ID: 35408591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and application of recyclable magnetic cellulose nanocrystals for effective demulsification of water in crude oil emulsions.
    Amiri Z; Halladj R; Shekarriz M; Rashidi A
    Environ Pollut; 2024 Feb; 342():123042. PubMed ID: 38040188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-Step Synthesis of Amphiphilic Nonylphenol Polyethyleneimine for Demulsification of Water in Heavy Crude Oil Emulsions.
    Ezzat AO; Atta AM; Al-Lohedan HA
    ACS Omega; 2020 Apr; 5(16):9212-9223. PubMed ID: 32363273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Amphiphilic Tricationic Imidazolium and Pyridinium Ionic Liquids for Demulsification of Arabic Heavy Crude Oil Brine Emulsions.
    Ezzat AO; Al-Lohedan HA; Atta AM
    ACS Omega; 2021 Feb; 6(7):5061-5073. PubMed ID: 33644615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aromatic poly (amino acids) as an effective low-temperature demulsifier for treating crude oil-in-water emulsions.
    Wu Z; Yang Q; Cui C; Wu Y; Xie Y; Wang H
    J Hazard Mater; 2024 Jul; 472():134608. PubMed ID: 38754229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demulsification of water-in-crude oil emulsion driven by a carbonaceous demulsifier from natural rice husks.
    Ye F; Zhang Z; Ao Y; Li B; Chen L; Shen L; Feng X; Yang Y; Yuan H; Mi Y
    Chemosphere; 2022 Feb; 288(Pt 3):132656. PubMed ID: 34710449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent developments, challenges, and prospects of ultrasound-assisted oil technologies.
    Adeyemi I; Meribout M; Khezzar L
    Ultrason Sonochem; 2022 Jan; 82():105902. PubMed ID: 34974390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial sciences in unconventional petroleum production: from fundamentals to applications.
    He L; Lin F; Li X; Sui H; Xu Z
    Chem Soc Rev; 2015 Aug; 44(15):5446-94. PubMed ID: 25986005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Interaction of Water-in-Oil Emulsion Droplets with Interfacially Active Asphaltenes.
    Shi C; Zhang L; Xie L; Lu X; Liu Q; He J; Mantilla CA; Van den Berg FG; Zeng H
    Langmuir; 2017 Feb; 33(5):1265-1274. PubMed ID: 28081605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superwetting Stainless Steel Mesh Used for Both Immiscible Oil/Water and Surfactant-Stabilized Emulsion Separation.
    Zhang YP; Wang YN; Wan L; Chen XX; Zhao CH
    Membranes (Basel); 2023 Sep; 13(10):. PubMed ID: 37887980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.