These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Comparative physiology and efficacy of atropine and scopolamine in sarin nerve agent poisoning. Cornelissen AS; Klaassen SD; van Groningen T; Bohnert S; Joosen MJA Toxicol Appl Pharmacol; 2020 Jun; 396():114994. PubMed ID: 32251685 [TBL] [Abstract][Full Text] [Related]
24. Inhibition, reactivation and aging kinetics of highly toxic organophosphorus compounds: pig versus minipig acetylcholinesterase. Worek F; Aurbek N; Wetherell J; Pearce P; Mann T; Thiermann H Toxicology; 2008 Feb; 244(1):35-41. PubMed ID: 18054823 [TBL] [Abstract][Full Text] [Related]
25. Characterization of Pharmacokinetics in the Göttingen Minipig with Reference Human Drugs: An In Vitro and In Vivo Approach. Lignet F; Sherbetjian E; Kratochwil N; Jones R; Suenderhauf C; Otteneder MB; Singer T; Parrott N Pharm Res; 2016 Oct; 33(10):2565-79. PubMed ID: 27469324 [TBL] [Abstract][Full Text] [Related]
26. A delayed treatment model for the evaluation of scopolamine for VX nerve agent intoxication. Cornelissen AS; Garcia EE; Raulli RE; Laney J; Joosen MJA Toxicol Appl Pharmacol; 2021 Sep; 427():115650. PubMed ID: 34273408 [TBL] [Abstract][Full Text] [Related]
27. Loading and Sustained Release of Pralidoxime Chloride from Swellable MIL-88B(Fe) and Its Therapeutic Performance on Mice Poisoned by Neurotoxic Agents. Zhao D; Liu J; Zhang L; Zhou Y; Zhong Y; Yang Y; Huang C; Wang Y Inorg Chem; 2022 Jan; 61(3):1512-1520. PubMed ID: 34969248 [TBL] [Abstract][Full Text] [Related]
28. Development and characterization of an automated behavioral assessment platform for the Göttingen minipig. Langston JL; Myers TM Toxicol Lett; 2024 Apr; 394():128-137. PubMed ID: 38428545 [TBL] [Abstract][Full Text] [Related]
29. Effects of fosphenytoin on nerve agent-induced status epilepticus. McDonough JH; Benjamin A; McMonagle JD; Rowland T; Shih TM Drug Chem Toxicol; 2004 Feb; 27(1):27-39. PubMed ID: 15038246 [TBL] [Abstract][Full Text] [Related]
30. Nerve agent poisoning in primates: antilethal, anti-epileptic and neuroprotective effects of GK-11. Lallement G; Clarençon D; Masqueliez C; Baubichon D; Galonnier M; Burckhart MF; Peoc'h M; Mestries JC Arch Toxicol; 1998; 72(2):84-92. PubMed ID: 9456079 [TBL] [Abstract][Full Text] [Related]
31. Differences in vasomotor function of mesenteric arteries between Ossabaw minipigs with predisposition to metabolic syndrome and Göttingen minipigs. Eickelmann C; Lieder HR; Sturek M; Heusch G; Kleinbongard P Am J Physiol Heart Circ Physiol; 2024 Feb; 326(2):H408-H417. PubMed ID: 38133620 [TBL] [Abstract][Full Text] [Related]
32. Neuroprotective effects of imidazenil against chemical warfare nerve agent soman toxicity in guinea pigs. Wang Y; Oguntayo S; Wei Y; Wood E; Brown A; Jensen N; Auta J; Guiodotti A; Doctor BP; Nambiar MP Neurotoxicology; 2012 Mar; 33(2):169-77. PubMed ID: 22245390 [TBL] [Abstract][Full Text] [Related]
33. Development of a Functional Observational Battery in the Minipig for Regulatory Neurotoxicity Assessments. Zhong M; Shoemake C; Fuller A; White D; Hanks C; Brocksmith D; Liu J; Gad S; Bouchard G; Stricker-Krongrad A Int J Toxicol; 2017; 36(2):113-123. PubMed ID: 28196426 [TBL] [Abstract][Full Text] [Related]
34. A new telemetry-based system for assessing cardiovascular function in group-housed large animals. Taking the 3Rs to a new level with the evaluation of remote measurement via cloud data transmission. Markert M; Trautmann T; Krause F; Cioaga M; Mouriot S; Wetzel M; Guth BD J Pharmacol Toxicol Methods; 2018; 93():90-97. PubMed ID: 29597013 [TBL] [Abstract][Full Text] [Related]
35. Utility of Göttingen minipigs for the prediction of human pharmacokinetic profiles after intravenous drug administration. Ding N; Yamamoto S; Chisaki I; Nakayama M; Matsumoto SI; Hirabayashi H Drug Metab Pharmacokinet; 2021 Dec; 41():100408. PubMed ID: 34710650 [TBL] [Abstract][Full Text] [Related]
36. Electrocardiography and heart rate variability in Göttingen Minipigs: Impact of diurnal variation, lead placement, repeatability and streptozotocin-induced diabetes. Lyhne MK; Debes KP; Helgogaard T; Vegge A; Kildegaard J; Pedersen-Bjergaard U; Olsen LH J Pharmacol Toxicol Methods; 2022; 118():107221. PubMed ID: 36100059 [TBL] [Abstract][Full Text] [Related]
37. Pharmacokinetics of Three Oximes in a Guinea Pig Model and Efficacy of Combined Oxime Therapy. Bohnert S; van den Berg RM; Mikler J; Klaassen SD; Joosen MJA Toxicol Lett; 2020 May; 324():86-94. PubMed ID: 31954867 [TBL] [Abstract][Full Text] [Related]
38. Pharmacokinetics of diazepam intramuscularly administered to rhesus monkeys. Lukey BJ; Corcoran KD; Solana RP J Pharm Sci; 1991 Oct; 80(10):918-21. PubMed ID: 1783998 [TBL] [Abstract][Full Text] [Related]
39. The Aachen Minipig: Phenotype, Genotype, Hematological and Biochemical Characterization, and Comparison to the Göttingen Minipig. Pawlowsky K; Ernst L; Steitz J; Stopinski T; Kögel B; Henger A; Kluge R; Tolba R Eur Surg Res; 2017; 58(5-6):193-203. PubMed ID: 28433992 [TBL] [Abstract][Full Text] [Related]
40. Nonclinical evaluation of immunological safety in Göttingen Minipigs: The CONFIRM initiative. Descotes J; Allais L; Ancian P; Pedersen HD; Friry-Santini C; Iglesias A; Rubic-Schneider T; Skaggs H; Vestbjerg P Regul Toxicol Pharmacol; 2018 Apr; 94():271-275. PubMed ID: 29481836 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]