BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38704067)

  • 1. Emerging anticancer potential and mechanisms of snake venom toxins: A review.
    Guo X; Fu Y; Peng J; Fu Y; Dong S; Ding RB; Qi X; Bao J
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):131990. PubMed ID: 38704067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bothrops pauloensis snake venom toxins: the search for new therapeutic models.
    Rodrigues VM; Lopes DS; Castanheira LE; Gimenes SN; Naves de Souza DL; Ache DC; Borges IP; Yoneyama KA; Rodrigues RS
    Curr Top Med Chem; 2015; 15(7):670-84. PubMed ID: 25686731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive Snake Venomics of the Okinawa Habu Pit Viper,
    Damm M; Hempel BF; Nalbantsoy A; Süssmuth RD
    Molecules; 2018 Jul; 23(8):. PubMed ID: 30060607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Snake venom toxins: Potential anticancer therapeutics.
    Offor BC; Piater LA
    J Appl Toxicol; 2024 May; 44(5):666-685. PubMed ID: 37697914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Snake venom derived molecules in tumor angiogenesis and its application in cancer therapy; an overview.
    Dhananjaya BL; Sivashankari PR
    Curr Top Med Chem; 2015; 15(7):649-57. PubMed ID: 25714377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytotoxicity of snake venom enzymatic toxins: phospholipase A2 and l-amino acid oxidase.
    Hiu JJ; Yap MKK
    Biochem Soc Trans; 2020 Apr; 48(2):719-731. PubMed ID: 32267491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative venomics of the Prairie Rattlesnake (Crotalus viridis viridis) from Colorado: Identification of a novel pattern of ontogenetic changes in venom composition and assessment of the immunoreactivity of the commercial antivenom CroFab®.
    Saviola AJ; Pla D; Sanz L; Castoe TA; Calvete JJ; Mackessy SP
    J Proteomics; 2015 May; 121():28-43. PubMed ID: 25819372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Snake Venom Components: Tools and Cures to Target Cardiovascular Diseases.
    Frangieh J; Rima M; Fajloun Z; Henrion D; Sabatier JM; Legros C; Mattei C
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33921462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis.
    Kang TS; Georgieva D; Genov N; Murakami MT; Sinha M; Kumar RP; Kaur P; Kumar S; Dey S; Sharma S; Vrielink A; Betzel C; Takeda S; Arni RK; Singh TP; Kini RM
    FEBS J; 2011 Dec; 278(23):4544-76. PubMed ID: 21470368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Snake venom components affecting blood coagulation and the vascular system: structural similarities and marked diversity.
    Yamazaki Y; Morita T
    Curr Pharm Des; 2007; 13(28):2872-86. PubMed ID: 17979732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomics-guided bottom-up and top-down venomics of neonate and adult specimens of the arboreal rear-fanged Brown Treesnake, Boiga irregularis, from Guam.
    Pla D; Petras D; Saviola AJ; Modahl CM; Sanz L; Pérez A; Juárez E; Frietze S; Dorrestein PC; Mackessy SP; Calvete JJ
    J Proteomics; 2018 Mar; 174():71-84. PubMed ID: 29292096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An overview of the immune modulating effects of enzymatic toxins from snake venoms.
    Burin SM; Menaldo DL; Sampaio SV; Frantz FG; Castro FA
    Int J Biol Macromol; 2018 Apr; 109():664-671. PubMed ID: 29274419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemistry and toxicology of toxins purified from the venom of the snake Bothrops asper.
    Angulo Y; Lomonte B
    Toxicon; 2009 Dec; 54(7):949-57. PubMed ID: 19111755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic Investigation of Cape Cobra (
    McFarlane LO; Pukala TL
    Toxins (Basel); 2024 Jan; 16(2):. PubMed ID: 38393141
    [No Abstract]   [Full Text] [Related]  

  • 15. Proteomic and toxinological characterization of the venom of the South African Ringhals cobra Hemachatus haemachatus.
    Sánchez A; Herrera M; Villalta M; Solano D; Segura Á; Lomonte B; Gutiérrez JM; León G; Vargas M
    J Proteomics; 2018 Jun; 181():104-117. PubMed ID: 29656017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Snake venom L-amino acid oxidases: some consideration about their functional characterization.
    Zuliani JP; Kayano AM; Zaqueo KD; Neto AC; Sampaio SV; Soares AM; Stabeli RG
    Protein Pept Lett; 2009; 16(8):908-12. PubMed ID: 19689417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haemostatically active proteins in snake venoms.
    Sajevic T; Leonardi A; Križaj I
    Toxicon; 2011 Apr; 57(5):627-45. PubMed ID: 21277886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Snake venom three-finger toxins and their potential in drug development targeting cardiovascular diseases.
    Kini RM; Koh CY
    Biochem Pharmacol; 2020 Nov; 181():114105. PubMed ID: 32579959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Snake Venom L-Amino Acid Oxidases potential biomedical applications].
    Abdelkafi-Koubaa Z; Morjen M; Srairi-Abid N; El Ayeb M; Marrakchi N
    Arch Inst Pasteur Tunis; 2014; 91(1-4):15-32. PubMed ID: 26402967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From venom to drugs: a review and critical analysis of Indian snake venom toxins envisaged as anticancer drug prototypes.
    Kalita B; Saviola AJ; Mukherjee AK
    Drug Discov Today; 2021 Apr; 26(4):993-1005. PubMed ID: 33486112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.