BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38704285)

  • 1. The Contribution of Explainable Machine Learning Algorithms Using ROI-based Brain Surface Morphology Parameters in Distinguishing Early-onset Schizophrenia From Bipolar Disorder.
    Saglam Y; Ermis C; Takir S; Oz A; Hamid R; Kose H; Bas A; Karacetin G
    Acad Radiol; 2024 May; ():. PubMed ID: 38704285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can diffusion tensor imaging have a diagnostic utility to differentiate early-onset forms of bipolar disorder and schizophrenia: A neuroimaging study with explainable machine learning algorithms.
    Saglam Y; Oz A; Yildiz G; Ermis C; Kargin OA; Arslan S; Karacetin G
    Psychiatry Res Neuroimaging; 2023 Oct; 335():111696. PubMed ID: 37595386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical surface analysis for focal cortical dysplasia diagnosis by using PET images.
    Bacon EJ; Jin C; He D; Hu S; Wang L; Li H; Qi S
    Heliyon; 2024 Jan; 10(1):e23605. PubMed ID: 38187332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning algorithm performance evaluation in structural magnetic resonance imaging-based classification of pediatric bipolar disorders type I patients.
    Dou R; Gao W; Meng Q; Zhang X; Cao W; Kuang L; Niu J; Guo Y; Cui D; Jiao Q; Qiu J; Su L; Lu G
    Front Comput Neurosci; 2022; 16():915477. PubMed ID: 36082304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification.
    Lee HS; Hong H; Jung DC; Park S; Kim J
    Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical morphology of adolescents with bipolar disorder and with schizophrenia.
    Janssen J; Alemán-Gómez Y; Schnack H; Balaban E; Pina-Camacho L; Alfaro-Almagro F; Castro-Fornieles J; Otero S; Baeza I; Moreno D; Bargalló N; Parellada M; Arango C; Desco M
    Schizophr Res; 2014 Sep; 158(1-3):91-9. PubMed ID: 25085384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Acute Kidney Injury after Extracorporeal Cardiac Surgery (CSA-AKI) by Machine Learning Algorithms.
    Tong Y; Niu X; Liu F
    Heart Surg Forum; 2023 Oct; 26(5):E537-E551. PubMed ID: 37920093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of explainable machine-learning models for carotid atherosclerosis early screening.
    Yun K; He T; Zhen S; Quan M; Yang X; Man D; Zhang S; Wang W; Han X
    J Transl Med; 2023 May; 21(1):353. PubMed ID: 37246225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiparametric MRI-Based Interpretable Radiomics Machine Learning Model Differentiates Medulloblastoma and Ependymoma in Children: A Two-Center Study.
    Yimit Y; Yasin P; Tuersun A; Wang J; Wang X; Huang C; Abudoubari S; Chen X; Ibrahim I; Nijiati P; Wang Y; Zou X; Nijiati M
    Acad Radiol; 2024 Mar; ():. PubMed ID: 38508934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain Hemorrhage Classification in CT Scan Images Using Minimalist Machine Learning.
    Solorio-Ramírez JL; Saldana-Perez M; Lytras MD; Moreno-Ibarra MA; Yáñez-Márquez C
    Diagnostics (Basel); 2021 Aug; 11(8):. PubMed ID: 34441383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of machine learning techniques for predicting survival in ovarian cancer.
    Sorayaie Azar A; Babaei Rikan S; Naemi A; Bagherzadeh Mohasefi J; Pirnejad H; Bagherzadeh Mohasefi M; Wiil UK
    BMC Med Inform Decis Mak; 2022 Dec; 22(1):345. PubMed ID: 36585641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive model and risk analysis for peripheral vascular disease in type 2 diabetes mellitus patients using machine learning and shapley additive explanation.
    Liu L; Bi B; Cao L; Gui M; Ju F
    Front Endocrinol (Lausanne); 2024; 15():1320335. PubMed ID: 38481447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models.
    Ye Z; An S; Gao Y; Xie E; Zhao X; Guo Z; Li Y; Shen N; Ren J; Zheng J
    Eur J Med Res; 2023 Jan; 28(1):33. PubMed ID: 36653875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Validation of Contrast-Enhanced CT-Based Deep Transfer Learning and Combined Clinical-Radiomics Model to Discriminate Thymomas and Thymic Cysts: A Multicenter Study.
    Yang Y; Cheng J; Peng Z; Yi L; Lin Z; He A; Jin M; Cui C; Liu Y; Zhong Q; Zuo M
    Acad Radiol; 2024 Apr; 31(4):1615-1628. PubMed ID: 37949702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretable machine learning model integrating clinical and elastosonographic features to detect renal fibrosis in Asian patients with chronic kidney disease.
    Chen Z; Wang Y; Ying MTC; Su Z
    J Nephrol; 2024 Feb; ():. PubMed ID: 38315278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Textural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validation.
    Kocak B; Yardimci AH; Bektas CT; Turkcanoglu MH; Erdim C; Yucetas U; Koca SB; Kilickesmez O
    Eur J Radiol; 2018 Oct; 107():149-157. PubMed ID: 30292260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An explainable supervised machine learning predictor of acute kidney injury after adult deceased donor liver transplantation.
    Zhang Y; Yang D; Liu Z; Chen C; Ge M; Li X; Luo T; Wu Z; Shi C; Wang B; Huang X; Zhang X; Zhou S; Hei Z
    J Transl Med; 2021 Jul; 19(1):321. PubMed ID: 34321016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of structural brain MRI and multi-parameter classification for Alzheimer's disease.
    Zhang Y; Liu S
    Biomed Tech (Berl); 2018 Jul; 63(4):427-437. PubMed ID: 28622141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation and interpretation of a multimodal drowsiness detection system using explainable machine learning.
    Hasan MM; Watling CN; Larue GS
    Comput Methods Programs Biomed; 2024 Jan; 243():107925. PubMed ID: 38000319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Three Machine Learning Algorithms for the Automatic Classification of EMG Patterns in Gait Disorders.
    Fricke C; Alizadeh J; Zakhary N; Woost TB; Bogdan M; Classen J
    Front Neurol; 2021; 12():666458. PubMed ID: 34093413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.