These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38704387)

  • 1. A statistical resolution measure of fluorescence microscopy with finite photons.
    Li Y; Huang F
    Nat Commun; 2024 May; 15(1):3760. PubMed ID: 38704387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rethinking resolution estimation in fluorescence microscopy: from theoretical resolution criteria to super-resolution microscopy.
    Li M; Huang ZL
    Sci China Life Sci; 2020 Dec; 63(12):1776-1785. PubMed ID: 33351176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why is super-resolution so inefficient?
    Lipson SG
    Micron; 2003; 34(6-7):309-12. PubMed ID: 12932774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperbolic material enhanced scattering nanoscopy for label-free super-resolution imaging.
    Lee YU; Li S; Wisna GBM; Zhao J; Zeng Y; Tao AR; Liu Z
    Nat Commun; 2022 Nov; 13(1):6631. PubMed ID: 36333375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximizing the biochemical resolving power of fluorescence microscopy.
    Esposito A; Popleteeva M; Venkitaraman AR
    PLoS One; 2013; 8(10):e77392. PubMed ID: 24204821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical resolving power of fluorescence lifetime imaging: untangling the roles of the instrument response function and photon-statistics.
    Trinh AL; Esposito A
    Biomed Opt Express; 2021 Jul; 12(7):3775-3788. PubMed ID: 34457379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breaking the diffraction limit using fluorescence quantum coherence.
    Li W; Wang Z
    Opt Express; 2022 Apr; 30(8):12684-12694. PubMed ID: 35472900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolution and super-resolution.
    Sheppard CJR
    Microsc Res Tech; 2017 Jun; 80(6):590-598. PubMed ID: 28181372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subnanometre single-molecule localization, registration and distance measurements.
    Pertsinidis A; Zhang Y; Chu S
    Nature; 2010 Jul; 466(7306):647-51. PubMed ID: 20613725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive study of unexpected microscope condensers formed in sample arrangements commonly used in optical microscopy.
    Desai DB; Aldawsari MM; Alharbi BM; Sen S; Grave de Peralta L
    Appl Opt; 2015 Sep; 54(25):7781-8. PubMed ID: 26368905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Confocal Reflection Super-Resolution Technique to Image Golgi-Cox Stained Neurons.
    Sivaguru M; Khaw YM; Inoue M
    J Microsc; 2019 Aug; 275(2):115-130. PubMed ID: 31237354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Throughput Total Internal Reflection Fluorescence and Direct Stochastic Optical Reconstruction Microscopy Using a Photonic Chip.
    Coucheron DA; Helle ØI; Øie CI; Tinguely JC; Ahluwalia BS
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31789320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subdiffraction-limit two-photon fluorescence microscopy for GFP-tagged cell imaging.
    Li Q; Wu SS; Chou KC
    Biophys J; 2009 Dec; 97(12):3224-8. PubMed ID: 20006960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How did correlative atomic force microscopy and super-resolution microscopy evolve in the quest for unravelling enigmas in biology?
    Miranda A; Gómez-Varela AI; Stylianou A; Hirvonen LM; Sánchez H; De Beule PAA
    Nanoscale; 2021 Feb; 13(4):2082-2099. PubMed ID: 33346312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lens-based fluorescence nanoscopy.
    Eggeling C; Willig KI; Sahl SJ; Hell SW
    Q Rev Biophys; 2015 May; 48(2):178-243. PubMed ID: 25998828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super-resolution microscopy with very large working distance by means of distributed aperture illumination.
    Birk U; Hase JV; Cremer C
    Sci Rep; 2017 Jun; 7(1):3685. PubMed ID: 28623362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Analysis of the Dual-Band Far-Field Super-Resolution Metalens with Large Aperture.
    Guo C; Zheng Z; Liu Z; Yan Z; Wang Y; Chen R; Liu Z; Yu P; Wan W; Zhao Q; Huang X
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional, dual-color nanoscopy enabled by migrating photon avalanches with one single low-power CW beam.
    Zhu Z; Liang Y; Zhao Q; Wu H; Pan B; Qiao S; Wang B; Zhan Q
    Sci Bull (Beijing); 2024 Feb; 69(4):458-465. PubMed ID: 38171962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast stimulated emission nanoscopy based on single molecule localization.
    Wang X; Chen D; Yu B; Niu H
    Appl Opt; 2015 Aug; 54(22):6919-23. PubMed ID: 26368110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene- and metal-induced energy transfer for single-molecule imaging and live-cell nanoscopy with (sub)-nanometer axial resolution.
    Ghosh A; Chizhik AI; Karedla N; Enderlein J
    Nat Protoc; 2021 Jul; 16(7):3695-3715. PubMed ID: 34099942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.