These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38704792)

  • 1. Cognitive load in tele-robotic surgery: a comparison of eye tracker designs.
    Soberanis-Mukul RD; Puentes PR; Acar A; Gupta I; Bhowmick J; Li Y; Ghazi A; Wu JY; Unberath M
    Int J Comput Assist Radiol Surg; 2024 Jul; 19(7):1281-1284. PubMed ID: 38704792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cognitive effort detection for tele-robotic surgery via personalized pupil response modeling.
    Büter R; Soberanis-Mukul RD; Shankar R; Ruiz Puentes P; Ghazi A; Wu JY; Unberath M
    Int J Comput Assist Radiol Surg; 2024 Jun; 19(6):1113-1120. PubMed ID: 38589579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Head motion-corrected eye gaze tracking with the da Vinci surgical system.
    Banks A; Eldin Abdelaal A; Salcudean S
    Int J Comput Assist Radiol Surg; 2024 Jul; 19(7):1459-1467. PubMed ID: 38888820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pupil Response in Visual Tracking Tasks: The Impacts of Task Load, Familiarity, and Gaze Position.
    Wu Y; Zhang Z; Zhang Y; Zheng B; Aghazadeh F
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of slippage on the data quality of head-worn eye trackers.
    Niehorster DC; Santini T; Hessels RS; Hooge ITC; Kasneci E; Nyström M
    Behav Res Methods; 2020 Jun; 52(3):1140-1160. PubMed ID: 31898290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using mobile eye tracking to measure cognitive load through gaze behavior during walking in lower limb prosthesis users: A preliminary assessment.
    Manz S; Schmalz T; Ernst M; Köhler TM; Gonzalez-Vargas J; Dosen S
    Clin Biomech (Bristol, Avon); 2024 May; 115():106250. PubMed ID: 38657356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pupil size influences the eye-tracker signal during saccades.
    Nyström M; Hooge I; Andersson R
    Vision Res; 2016 Apr; 121():95-103. PubMed ID: 26940030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaze-angle dependency of pupil-size measurements in head-mounted eye tracking.
    Petersch B; Dierkes K
    Behav Res Methods; 2022 Apr; 54(2):763-779. PubMed ID: 34347276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaze Tracking and Point Estimation Using Low-Cost Head-Mounted Devices.
    Lee KF; Chen YL; Yu CW; Chin KY; Wu CH
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32235523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pupil size dynamics during fixation impact the accuracy and precision of video-based gaze estimation.
    Choe KW; Blake R; Lee SH
    Vision Res; 2016 Jan; 118():48-59. PubMed ID: 25578924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method for measuring gaze orientation in space in unrestrained head conditions.
    Cesqui B; de Langenberg Rv; Lacquaniti F; d'Avella A
    J Vis; 2013 Jul; 13(8):. PubMed ID: 23902754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Accuracy 3D Gaze Estimation with Efficient Recalibration for Head-Mounted Gaze Tracking Systems.
    Xia Y; Liang J; Li Q; Xin P; Zhang N
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise estimation for head-mounted 3D binocular eye tracking using Pupil Core eye-tracking goggles.
    Velisar A; Shanidze NM
    Behav Res Methods; 2024 Jan; 56(1):53-79. PubMed ID: 37369939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pupil diameter measurement errors as a function of gaze direction in corneal reflection eyetrackers.
    Brisson J; Mainville M; Mailloux D; Beaulieu C; Serres J; Sirois S
    Behav Res Methods; 2013 Dec; 45(4):1322-31. PubMed ID: 23468182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust eye tracking based on multiple corneal reflections for clinical applications.
    Mestre C; Gautier J; Pujol J
    J Biomed Opt; 2018 Mar; 23(3):1-9. PubMed ID: 29500875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A geometric method for computing ocular kinematics and classifying gaze events using monocular remote eye tracking in a robotic environment.
    Singh T; Perry CM; Herter TM
    J Neuroeng Rehabil; 2016 Jan; 13():10. PubMed ID: 26812907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gaze estimation interpolation methods based on binocular data.
    Sesma-Sanchez L; Villanueva A; Cabeza R
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2235-2243. PubMed ID: 22665501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable Gaze Tracking with Filtering Based on Internet of Things.
    Xiao P; Wu J; Wang Y; Chi J; Wang Z
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-Range Gaze Tracking System for Large Movements.
    Cho DC; Kim WY
    IEEE Trans Biomed Eng; 2013 Dec; 60(12):3432-40. PubMed ID: 23751947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ACE-DNV: Automatic classification of gaze events in dynamic natural viewing.
    Nejad A; de Haan GA; Heutink J; Cornelissen FW
    Behav Res Methods; 2024 Apr; 56(4):3300-3314. PubMed ID: 38448726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.