BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38704799)

  • 1. A Pilot, Predictive Surveillance Model in Pharmacovigilance Using Machine Learning Approaches.
    De Abreu Ferreira R; Zhong S; Moureaud C; Le MT; Rothstein A; Li X; Wang L; Patwardhan M
    Adv Ther; 2024 Jun; 41(6):2435-2445. PubMed ID: 38704799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of Artificial Intelligence to Support the Automatic Coding of Patient Adverse Drug Reaction Reports, Using Nationwide Pharmacovigilance Data.
    Martin GL; Jouganous J; Savidan R; Bellec A; Goehrs C; Benkebil M; Miremont G; Micallef J; Salvo F; Pariente A; Létinier L;
    Drug Saf; 2022 May; 45(5):535-548. PubMed ID: 35579816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting early safety signals of infliximab using machine learning algorithms in the Korea adverse event reporting system.
    Lee JE; Kim JH; Bae JH; Song I; Shin JY
    Sci Rep; 2022 Sep; 12(1):14869. PubMed ID: 36050484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of adverse event reports from marketing authorization holder-sponsored patient support programs on the performance of signal detection in pharmacovigilance.
    Lee I; Lee TA; Crawford SY; Kilpatrick RD; Calip GS; Jokinen JD
    Expert Opin Drug Saf; 2020 Oct; 19(10):1357-1366. PubMed ID: 32662668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorting Through the Safety Data Haystack: Using Machine Learning to Identify Individual Case Safety Reports in Social-Digital Media.
    Comfort S; Perera S; Hudson Z; Dorrell D; Meireis S; Nagarajan M; Ramakrishnan C; Fine J
    Drug Saf; 2018 Jun; 41(6):579-590. PubMed ID: 29446035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing Pharmacovigilance in Sub-Saharan Africa Through Training and Mentoring: A GSK Pilot Initiative in Malawi.
    Jusot V; Chimimba F; Dzabala N; Menang O; Cole J; Gardiner G; Ofori-Anyinam O; Oladehin O; Sambakunsi C; Kawaye M; Stegmann JU; Guerra Mendoza Y
    Drug Saf; 2020 Jun; 43(6):583-593. PubMed ID: 32239447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leveraging Machine Learning to Facilitate Individual Case Causality Assessment of Adverse Drug Reactions.
    Cherkas Y; Ide J; van Stekelenborg J
    Drug Saf; 2022 May; 45(5):571-582. PubMed ID: 35579819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilizing drug-target-event relationships to unveil safety patterns in pharmacovigilance.
    Hauser AS; Kooistra AJ; Sverrisdóttir E; Sessa M
    Expert Opin Drug Saf; 2020 Aug; 19(8):961-968. PubMed ID: 32510245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Automated System Combining Safety Signal Detection and Prioritization from Healthcare Databases: A Pilot Study.
    Arnaud M; Bégaud B; Thiessard F; Jarrion Q; Bezin J; Pariente A; Salvo F
    Drug Saf; 2018 Apr; 41(4):377-387. PubMed ID: 29185236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Use of Artificial Intelligence in Pharmacovigilance: A Systematic Review of the Literature.
    Salas M; Petracek J; Yalamanchili P; Aimer O; Kasthuril D; Dhingra S; Junaid T; Bostic T
    Pharmaceut Med; 2022 Oct; 36(5):295-306. PubMed ID: 35904529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The value of time-to-onset in statistical signal detection of adverse drug reactions: a comparison with disproportionality analysis in spontaneous reports from the Netherlands.
    Scholl JH; van Puijenbroek EP
    Pharmacoepidemiol Drug Saf; 2016 Dec; 25(12):1361-1367. PubMed ID: 27686554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prospective data mining of six products in the US FDA Adverse Event Reporting System: disposition of events identified and impact on product safety profiles.
    Bailey S; Singh A; Azadian R; Huber P; Blum M
    Drug Saf; 2010 Feb; 33(2):139-46. PubMed ID: 20082540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Facebook and Twitter Monitoring to Detect Safety Signals for Medical Products: An Analysis of Recent FDA Safety Alerts.
    Pierce CE; Bouri K; Pamer C; Proestel S; Rodriguez HW; Van Le H; Freifeld CC; Brownstein JS; Walderhaug M; Edwards IR; Dasgupta N
    Drug Saf; 2017 Apr; 40(4):317-331. PubMed ID: 28044249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of exposure model misspecification on signal detection in prospective pharmacovigilance.
    van Gaalen RD; Abrahamowicz M; Buckeridge DL
    Pharmacoepidemiol Drug Saf; 2015 May; 24(5):456-67. PubMed ID: 25187155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Useful Interplay Between Spontaneous ADR Reports and Electronic Healthcare Records in Signal Detection.
    Pacurariu AC; Straus SM; Trifirò G; Schuemie MJ; Gini R; Herings R; Mazzaglia G; Picelli G; Scotti L; Pedersen L; Arlett P; van der Lei J; Sturkenboom MC; Coloma PM
    Drug Saf; 2015 Dec; 38(12):1201-10. PubMed ID: 26370104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial Intelligence in Pharmacovigilance and COVID-19.
    Bhardwaj K; Alam R; Pandeya A; Sharma PK
    Curr Drug Saf; 2023; 18(1):5-14. PubMed ID: 35382726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Multiple Pharmacovigilance Models Improves the Timeliness of Signal Detection in Simulated Prospective Surveillance.
    van Gaalen RD; Abrahamowicz M; Buckeridge DL
    Drug Saf; 2017 Nov; 40(11):1119-1129. PubMed ID: 28664355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structured assessment for prospective identification of safety signals in electronic medical records: evaluation in the health improvement network.
    Cederholm S; Hill G; Asiimwe A; Bate A; Bhayat F; Persson Brobert G; Bergvall T; Ansell D; Star K; Norén GN
    Drug Saf; 2015 Jan; 38(1):87-100. PubMed ID: 25539877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting adverse drug reactions in discharge summaries of electronic medical records using Readpeer.
    Tang Y; Yang J; Ang PS; Dorajoo SR; Foo B; Soh S; Tan SH; Tham MY; Ye Q; Shek L; Sung C; Tung A
    Int J Med Inform; 2019 Aug; 128():62-70. PubMed ID: 31160013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparison Study of Algorithms to Detect Drug-Adverse Event Associations: Frequentist, Bayesian, and Machine-Learning Approaches.
    Pham M; Cheng F; Ramachandran K
    Drug Saf; 2019 Jun; 42(6):743-750. PubMed ID: 30762164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.