These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38705032)

  • 1. Affordance-based control of braking in cycling: Experience reveals differences in the style of control.
    Gotardi GC; van der Kamp J; Navarro M; Savelsbergh GJP; Rodrigues ST
    Hum Mov Sci; 2024 Jun; 95():103225. PubMed ID: 38705032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. E-bikers' braking behavior: Results from a naturalistic cycling study.
    Huertas-Leyva P; Dozza M; Baldanzini N
    Traffic Inj Prev; 2019; 20(sup3):62-67. PubMed ID: 31442089
    [No Abstract]   [Full Text] [Related]  

  • 3. The scaling of information to action in visually guided braking.
    Fajen BR
    J Exp Psychol Hum Percept Perform; 2005 Oct; 31(5):1107-23. PubMed ID: 16262502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling cyclists' comfort zones from obstacle avoidance manoeuvres.
    Lee O; Rasch A; Schwab AL; Dozza M
    Accid Anal Prev; 2020 Sep; 144():105609. PubMed ID: 32615474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating Automated Emergency Braking with and without Torricelli Vacuum Emergency Braking for cyclists: Effect of brake deceleration and sensor field-of-view on accidents, injuries and fatalities.
    Jeppsson H; Lubbe N
    Accid Anal Prev; 2020 Jul; 142():105538. PubMed ID: 32470821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of visually guided braking using constant-[Formula: see text] and proportional rate.
    Kadihasanoglu D; Beer RD; Bingham N; Bingham GP
    Exp Brain Res; 2021 Jan; 239(1):217-235. PubMed ID: 33135131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calibration, information, and control strategies for braking to avoid a collision.
    Fajen BR
    J Exp Psychol Hum Percept Perform; 2005 Jun; 31(3):480-501. PubMed ID: 15982127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Driver Evasive Maneuvering Prior to Intersection Crashes Using Event Data Recorders.
    Scanlon JM; Kusano KD; Gabler HC
    Traffic Inj Prev; 2015; 16 Suppl 2():S182-9. PubMed ID: 26436230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of automatic emergency braking responses in passenger vehicles evaluated in the IIHS front crash prevention program.
    Kidd DG; Perez-Rapela D; Jermakian JS
    Accid Anal Prev; 2023 Sep; 190():107150. PubMed ID: 37301163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does ABS ensure good performance in emergency braking for less skilled motorcyclists?
    Huertas-Leyva P; Savino G; Baldanzini N; Pierini M
    Accid Anal Prev; 2023 Sep; 190():107148. PubMed ID: 37348453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field testing the applicability of motorcycle autonomous emergency braking (MAEB) during pre-crash avoidance maneuver.
    Lucci C; Baldanzini N; Savino G
    Traffic Inj Prev; 2021; 22(3):246-251. PubMed ID: 33709844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergency braking at intersections: A motion-base motorcycle simulator study.
    Kovácsová N; Grottoli M; Celiberti F; Lemmens Y; Happee R; Hagenzieker MP; de Winter JCF
    Appl Ergon; 2020 Jan; 82():102970. PubMed ID: 31614279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of automated versus manual emergency braking on rear seat adult and pediatric occupant precrash motion.
    Graci V; Douglas E; Seacrist T; Kerrigan J; Mansfield J; Bolte J; Sherony R; Hallman J; Arbogast KB
    Traffic Inj Prev; 2019; 20(sup1):S106-S111. PubMed ID: 31381438
    [No Abstract]   [Full Text] [Related]  

  • 14. Driver braking behavior analysis to improve autonomous emergency braking systems in typical Chinese vehicle-bicycle conflicts.
    Duan J; Li R; Hou L; Wang W; Li G; Li SE; Cheng B; Gao H
    Accid Anal Prev; 2017 Nov; 108():74-82. PubMed ID: 28858775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy Improvement of Braking Force via Deceleration Feedback Functions Applied to Braking Systems.
    Wang Y; Wen X; Meng H; Zhang X; Li R; Serra R
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validity of a device designed to measure braking power in bicycle disc brakes.
    Miller MC; Fink PW; Macdermid PW; Perry BG; Stannard SR
    Sports Biomech; 2018 Sep; 17(3):303-313. PubMed ID: 28730920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-to-collision analysis of pedestrian and pedal-cycle accidents for the development of autonomous emergency braking systems.
    Lenard J; Welsh R; Danton R
    Accid Anal Prev; 2018 Jun; 115():128-136. PubMed ID: 29567589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benefits estimation of regenerative braking versus service braking.
    Mitropoulos-Rundus C; Schwarz C; McGehee D
    Ergonomics; 2021 Sep; 64(9):1217-1227. PubMed ID: 33781173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AEB effectiveness evaluation based on car-to-cyclist accident reconstructions using video of drive recorder.
    Zhao Y; Ito D; Mizuno K
    Traffic Inj Prev; 2019; 20(1):100-106. PubMed ID: 30822153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual control of braking: a test of the tau hypothesis.
    Yilmaz EH; Warren WH
    J Exp Psychol Hum Percept Perform; 1995 Oct; 21(5):996-1014. PubMed ID: 7595250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.