These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 38705395)
1. Fine-tuning an aromatic ring-hydroxylating oxygenase to degrade high molecular weight polycyclic aromatic hydrocarbon. Guo L; Ouyang X; Wang W; Qiu X; Zhao YL; Xu P; Tang H J Biol Chem; 2024 Jun; 300(6):107343. PubMed ID: 38705395 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a novel aromatic ring-hydroxylating oxygenase, NarA2B2, from thermophilic Guo L; Ouyang X; Wang W; Huang Y; Qiu X; Xu P; Tang H Appl Environ Microbiol; 2023 Oct; 89(10):e0086523. PubMed ID: 37819076 [TBL] [Abstract][Full Text] [Related]
3. Pleiotropic and epistatic behavior of a ring-hydroxylating oxygenase system in the polycyclic aromatic hydrocarbon metabolic network from Mycobacterium vanbaalenii PYR-1. Kweon O; Kim SJ; Kim DW; Kim JM; Kim HL; Ahn Y; Sutherland JB; Cerniglia CE J Bacteriol; 2014 Oct; 196(19):3503-15. PubMed ID: 25070740 [TBL] [Abstract][Full Text] [Related]
4. Substrate specificity and structural characteristics of the novel Rieske nonheme iron aromatic ring-hydroxylating oxygenases NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1. Kweon O; Kim SJ; Freeman JP; Song J; Baek S; Cerniglia CE mBio; 2010 Jun; 1(2):. PubMed ID: 20714442 [TBL] [Abstract][Full Text] [Related]
5. Characterization of a polycyclic aromatic ring-hydroxylation dioxygenase from Mycobacterium sp. NJS-P. Zeng J; Zhu Q; Wu Y; Chen H; Lin X Chemosphere; 2017 Oct; 185():67-74. PubMed ID: 28686888 [TBL] [Abstract][Full Text] [Related]
6. A profile of ring-hydroxylating oxygenases that degrade aromatic pollutants. Peng RH; Xiong AS; Xue Y; Fu XY; Gao F; Zhao W; Tian YS; Yao QH Rev Environ Contam Toxicol; 2010; 206():65-94. PubMed ID: 20652669 [TBL] [Abstract][Full Text] [Related]
7. Catalytic resilience of multicomponent aromatic ring-hydroxylating dioxygenases in Pseudomonas for degradation of polycyclic aromatic hydrocarbons. Yesankar PJ; Patil A; Kapley A; Qureshi A World J Microbiol Biotechnol; 2023 Apr; 39(7):166. PubMed ID: 37076735 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a topologically unique oxygenase from Sphingobium sp. PNB capable of catalyzing a broad spectrum of aromatics. Khara P; Roy M; Chakraborty J; Dutta A; Dutta TK Enzyme Microb Technol; 2018 Apr; 111():74-80. PubMed ID: 29421041 [TBL] [Abstract][Full Text] [Related]
9. Effects of polycyclic aromatic hydrocarbon structure on PAH mineralization and toxicity to soil microorganisms after oxidative bioremediation by laccase. Zeng J; Li Y; Dai Y; Wu Y; Lin X Environ Pollut; 2021 Oct; 287():117581. PubMed ID: 34166999 [TBL] [Abstract][Full Text] [Related]
10. [Advances in bacterial Rieske non-heme iron ring-hydroxylating dioxygenases that initiate polycyclic aromatic hydrocarbons degradation]. Han Q; Qin Y; Li D Sheng Wu Gong Cheng Xue Bao; 2021 Oct; 37(10):3439-3458. PubMed ID: 34708603 [TBL] [Abstract][Full Text] [Related]
11. Mutation of Phenylalanine-223 to Leucine Enhances Transformation of Benzo[a]pyrene by Ring-Hydroxylating Dioxygenase of Sphingobium sp. FB3 by increasing Accessibility of the Catalytic Site. Fu B; Xu T; Cui Z; Ng HL; Wang K; Li J; Li QX J Agric Food Chem; 2018 Feb; 66(5):1206-1213. PubMed ID: 29336152 [TBL] [Abstract][Full Text] [Related]
13. Polycyclic Aromatic Hydrocarbon (PAH) Degradation Pathways of the Obligate Marine PAH Degrader Cycloclasticus sp. Strain P1. Wang W; Wang L; Shao Z Appl Environ Microbiol; 2018 Nov; 84(21):. PubMed ID: 30171002 [TBL] [Abstract][Full Text] [Related]
14. Hydroxylation at Multiple Positions Initiated the Biodegradation of Indeno[1,2,3-cd]Pyrene in Miao LL; Qu J; Liu ZP Front Microbiol; 2020; 11():568381. PubMed ID: 33072027 [TBL] [Abstract][Full Text] [Related]
16. Anaerobic biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a facultative anaerobe Pseudomonas sp. JP1. Liang L; Song X; Kong J; Shen C; Huang T; Hu Z Biodegradation; 2014 Nov; 25(6):825-33. PubMed ID: 25091324 [TBL] [Abstract][Full Text] [Related]
17. Degradation of polycyclic aromatic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum. Zafra G; Moreno-Montaño A; Absalón ÁE; Cortés-Espinosa DV Environ Sci Pollut Res Int; 2015 Jan; 22(2):1034-42. PubMed ID: 25106516 [TBL] [Abstract][Full Text] [Related]
18. Initial characterization of new bacteria degrading high-molecular weight polycyclic aromatic hydrocarbons isolated from a 2-year enrichment in a two-liquid-phase culture system. Gauthier E; Déziel E; Villemur R; Juteau P; Lépine F; Beaudet R J Appl Microbiol; 2003; 94(2):301-11. PubMed ID: 12534823 [TBL] [Abstract][Full Text] [Related]
19. Aryl hydrocarbon receptor-mediated activity of mutagenic polycyclic aromatic hydrocarbons determined using in vitro reporter gene assay. Machala M; Vondrácek J; Bláha L; Ciganek M; Neca JV Mutat Res; 2001 Oct; 497(1-2):49-62. PubMed ID: 11525907 [TBL] [Abstract][Full Text] [Related]
20. Bacterial benz(a)anthracene catabolic networks in contaminated soils and their modulation by other co-occurring HMW-PAHs. Jiménez-Volkerink SN; Jordán M; Singleton DR; Grifoll M; Vila J Environ Pollut; 2023 Jul; 328():121624. PubMed ID: 37059172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]