These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38705417)

  • 1. Exposure to low-concentration fipronil impairs survival, behavior, midgut morphology and physiology of Aedes aegypti larvae.
    Farder-Gomes CF; Miranda FR; Fernandes KM; Bernardes RC; Sena Bastos DS; Licursi de Oliveira L; Martins GF; Serrão JE
    Chemosphere; 2024 Jun; 358():142240. PubMed ID: 38705417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposure to copper sulfate impairs survival, post-embryonic midgut development and reproduction in Aedes aegypti.
    Miranda FR; Fernandes KM; Farder-Gomes CF; Bernardes RC; Oliveira AH; Arthidoro de Castro MB; Dourado LA; Oliveira LL; Martins GF; Serrão JE
    Infect Genet Evol; 2022 Jan; 97():105185. PubMed ID: 34920099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imidacloprid impairs the post-embryonic development of the midgut in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti).
    Fernandes KM; Gonzaga WG; Pascini TV; Miranda FR; Tomé HV; Serrão JE; Martins GF
    Med Vet Entomol; 2015 Sep; 29(3):245-54. PubMed ID: 25968596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aedes aegypti(Linnaeus) larvae from dengue outbreak areas in Selangor showing resistance to pyrethroids but susceptible to organophosphates.
    Leong CS; Vythilingam I; Wong ML; Wan Sulaiman WY; Lau YL
    Acta Trop; 2018 Sep; 185():115-126. PubMed ID: 29758171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of insecticide resistance in primary dengue vector, Aedes aegypti (Linn.) from Northern Districts of West Bengal, India.
    Bharati M; Saha D
    Acta Trop; 2018 Nov; 187():78-86. PubMed ID: 30026024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deltamethrin-mediated survival, behavior, and oenocyte morphology of insecticide-susceptible and resistant yellow fever mosquitos (Aedes aegypti).
    Marriel NB; Tomé HVV; Guedes RCN; Martins GF
    Acta Trop; 2016 Jun; 158():88-96. PubMed ID: 26943998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survival and swimming behavior of insecticide-exposed larvae and pupae of the yellow fever mosquito Aedes aegypti.
    Tomé HV; Pascini TV; Dângelo RA; Guedes RN; Martins GF
    Parasit Vectors; 2014 Apr; 7():195. PubMed ID: 24761789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological, histological and immunohistochemical studies on the toxicity of spent coffee grounds and caffeine on the larvae of Aedes aegypti (Diptera: Culicidae).
    Miranda FR; Fernandes KM; Bernardes RC; Martins GF
    Environ Pollut; 2021 Feb; 271():116307. PubMed ID: 33360348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aedes aegypti larvae treated with spinosad produce adults with damaged midgut and reduced fecundity.
    Fernandes KM; Tomé HVV; Miranda FR; Gonçalves WG; Pascini TV; Serrão JE; Martins GF
    Chemosphere; 2019 Apr; 221():464-470. PubMed ID: 30654260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies).
    Marcombe S; Poupardin R; Darriet F; Reynaud S; Bonnet J; Strode C; Brengues C; Yébakima A; Ranson H; Corbel V; David JP
    BMC Genomics; 2009 Oct; 10():494. PubMed ID: 19857255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First report on evaluation of commercial eugenol and piperine against Aedes aegypti L (Diptera: Culicidae) larvae: Mortality, detoxifying enzyme, and histopathological changes in the midgut.
    Subahar R; Huang A; Wijaya RS; Nur LSE; Susanto L; Firmansyah NE; Yulhasri Y; El Bayani GF; Dwira S
    Parasitol Int; 2024 Feb; 98():102813. PubMed ID: 37793471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicological effects of chemical constituents from Piper against the environmental burden Aedes aegypti Liston and their impact on non-target toxicity evaluation against biomonitoring aquatic insects.
    Vasantha-Srinivasan P; Thanigaivel A; Edwin ES; Ponsankar A; Senthil-Nathan S; Selin-Rani S; Kalaivani K; Hunter WB; Duraipandiyan V; Al-Dhabi NA
    Environ Sci Pollut Res Int; 2018 Apr; 25(11):10434-10446. PubMed ID: 28852982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exposure of mosquito (Aedes aegypti) larvae to the water extract and lectin-rich fraction of Moringa oleifera seeds impairs their development and future fecundity.
    Silva LLS; Fernandes KM; Miranda FR; Silva SCC; Coelho LCBB; Navarro DMDAF; Napoleão TH; Martins GF; Paiva PMG
    Ecotoxicol Environ Saf; 2019 Nov; 183():109583. PubMed ID: 31446169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Levels of insecticide resistance to deltamethrin, malathion, and temephos, and associated mechanisms in Aedes aegypti mosquitoes from the Guadeloupe and Saint Martin islands (French West Indies).
    Goindin D; Delannay C; Gelasse A; Ramdini C; Gaude T; Faucon F; David JP; Gustave J; Vega-Rua A; Fouque F
    Infect Dis Poverty; 2017 Feb; 6(1):38. PubMed ID: 28187780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical characterization of Aedes aegypti (Linnaeus) (Diptera: Culicidae) resistance to deltamethrin, fipronil, and imidacloprid.
    Sumra MW; Freed S; Shah MS; Nazar MZ; Hussain S; Naeem A
    Environ Monit Assess; 2021 Sep; 193(10):665. PubMed ID: 34545435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance to commonly used insecticides and underlying mechanisms of resistance in Aedes aegypti (L.) from Sri Lanka.
    Fernando HSD; Saavedra-Rodriguez K; Perera R; Black WC; De Silva BGDNK
    Parasit Vectors; 2020 Aug; 13(1):407. PubMed ID: 32778147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surveillance of Aedes aegypti populations in the city of Praia, Cape Verde: Zika virus infection, insecticide resistance and genetic diversity.
    Campos M; Ward D; Morales RF; Gomes AR; Silva K; Sepúlveda N; Gomez LF; Clark TG; Campino S
    Parasit Vectors; 2020 Sep; 13(1):481. PubMed ID: 32958043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute exposure to fipronil induces oxidative stress, apoptosis and impairs epithelial homeostasis in the midgut of the stingless bee Partamona helleri Friese (Hymenoptera: Apidae).
    Farder-Gomes CF; Fernandes KM; Bernardes RC; Bastos DSS; Martins GF; Serrão JE
    Sci Total Environ; 2021 Jun; 774():145679. PubMed ID: 33611004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Susceptibility to insecticides and resistance mechanisms in three populations of Aedes aegypti from Peru.
    Pinto J; Palomino M; Mendoza-Uribe L; Sinti C; Liebman KA; Lenhart A
    Parasit Vectors; 2019 Oct; 12(1):494. PubMed ID: 31640810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: a review.
    Gan SJ; Leong YQ; Bin Barhanuddin MFH; Wong ST; Wong SF; Mak JW; Ahmad RB
    Parasit Vectors; 2021 Jun; 14(1):315. PubMed ID: 34112220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.