These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38705502)

  • 21. ML-FGAT: Identification of multi-label protein subcellular localization by interpretable graph attention networks and feature-generative adversarial networks.
    Wang C; Wang Y; Ding P; Li S; Yu X; Yu B
    Comput Biol Med; 2024 Mar; 170():107944. PubMed ID: 38215617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TransRNAm: Identifying Twelve Types of RNA Modifications by an Interpretable Multi-Label Deep Learning Model Based on Transformer.
    Chen T; Wu T; Pan D; Xie J; Zhi J; Wang X; Quan L; Lyu Q
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3623-3634. PubMed ID: 37607147
    [TBL] [Abstract][Full Text] [Related]  

  • 24. mLoc-mRNA: predicting multiple sub-cellular localization of mRNAs using random forest algorithm coupled with feature selection via elastic net.
    Meher PK; Rai A; Rao AR
    BMC Bioinformatics; 2021 Jun; 22(1):342. PubMed ID: 34167457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. EL-RMLocNet: An explainable LSTM network for RNA-associated multi-compartment localization prediction.
    Asim MN; Ibrahim MA; Malik MI; Zehe C; Cloarec O; Trygg J; Dengel A; Ahmed S
    Comput Struct Biotechnol J; 2022; 20():3986-4002. PubMed ID: 35983235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. iDeepSubMito: identification of protein submitochondrial localization with deep learning.
    Hou Z; Yang Y; Li H; Wong KC; Li X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34337657
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting subcellular location of protein with evolution information and sequence-based deep learning.
    Liao Z; Pan G; Sun C; Tang J
    BMC Bioinformatics; 2021 Oct; 22(Suppl 10):515. PubMed ID: 34686152
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DeepSIRT: A deep neural network for identification of sirtuin targets and their subcellular localizations.
    Shah SMA; Taju SW; Dlamini BB; Ou YY
    Comput Biol Chem; 2021 Aug; 93():107514. PubMed ID: 34058657
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global importance analysis: An interpretability method to quantify importance of genomic features in deep neural networks.
    Koo PK; Majdandzic A; Ploenzke M; Anand P; Paul SB
    PLoS Comput Biol; 2021 May; 17(5):e1008925. PubMed ID: 33983921
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational modeling of mRNA degradation dynamics using deep neural networks.
    Yaish O; Orenstein Y
    Bioinformatics; 2022 Jan; 38(4):1087-1101. PubMed ID: 34849591
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clarion is a multi-label problem transformation method for identifying mRNA subcellular localizations.
    Bi Y; Li F; Guo X; Wang Z; Pan T; Guo Y; Webb GI; Yao J; Jia C; Song J
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36341591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep Forest-based Prediction of Protein Subcellular Localization.
    Zhao L; Wang J; Nabil MM; Zhang J
    Curr Gene Ther; 2018; 18(5):268-274. PubMed ID: 30209998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SCLpred-MEM: Subcellular localization prediction of membrane proteins by deep N-to-1 convolutional neural networks.
    Kaleel M; Ellinger L; Lalor C; Pollastri G; Mooney C
    Proteins; 2021 Oct; 89(10):1233-1239. PubMed ID: 33983651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations.
    Liu Q; Xie L
    PLoS Comput Biol; 2021 Feb; 17(2):e1008653. PubMed ID: 33577560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DeepCAC: a deep learning approach on DNA transcription factors classification based on multi-head self-attention and concatenate convolutional neural network.
    Zhang J; Liu B; Wu J; Wang Z; Li J
    BMC Bioinformatics; 2023 Sep; 24(1):345. PubMed ID: 37723425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DeepPred-SubMito: A Novel Submitochondrial Localization Predictor Based on Multi-Channel Convolutional Neural Network and Dataset Balancing Treatment.
    Wang X; Jin Y; Zhang Q
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32784927
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DeepCellEss: cell line-specific essential protein prediction with attention-based interpretable deep learning.
    Li Y; Zeng M; Zhang F; Wu FX; Li M
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36458923
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Learning, visualizing and exploring 16S rRNA structure using an attention-based deep neural network.
    Zhao Z; Woloszynek S; Agbavor F; Mell JC; Sokhansanj BA; Rosen GL
    PLoS Comput Biol; 2021 Sep; 17(9):e1009345. PubMed ID: 34550967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SAResNet: self-attention residual network for predicting DNA-protein binding.
    Shen LC; Liu Y; Song J; Yu DJ
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33837387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.