BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 3870612)

  • 1. Polyacrylonitrile membranes in hemodialysis: blood-surface interactions.
    Barozzi C; Cairo G; Fumero R; Scuri S; Tanzi MC; Albonico P
    Life Support Syst; 1985; 3 Suppl 1():490-4. PubMed ID: 3870612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane.
    Liu TY; Lin WC; Huang LY; Chen SY; Yang MC
    Biomaterials; 2005 Apr; 26(12):1437-44. PubMed ID: 15482832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma protein adsorption to hemodialysis membranes: studies in an in vitro model.
    Parzer S; Balcke P; Mannhalter C
    J Biomed Mater Res; 1993 Apr; 27(4):455-63. PubMed ID: 8463348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo assessment of intact parathyroid hormone adsorption by different dialysis membranes during hemodialysis.
    Balducci A; Coen G; Manni M; Perruzza I; Fassino V; Sardella D; Grandi F
    Artif Organs; 2004 Dec; 28(12):1067-75. PubMed ID: 15554934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of human skin fibroblasts with moderate wettable polyacrylonitrile--copolymer membranes.
    Groth T; Seifert B; Malsch G; Albrecht W; Paul D; Kostadinova A; Krasteva N; Altankov G
    J Biomed Mater Res; 2002 Aug; 61(2):290-300. PubMed ID: 12007210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms and kinetics of the synthesis and release of platelet-activating factor (PAF) by polyacrylonitrile membranes.
    Guastoni C; Tetta C; Hoenich NA; Gervasio R; Sereni L; Tessore E; Wratten ML; Civati G
    Clin Nephrol; 1996 Aug; 46(2):132-8. PubMed ID: 8869791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adhesion molecules and leukocyte common antigen on monocytes and granulocytes during hemodialysis.
    Tielemans CL; Delville JP; Husson CP; Madhoun P; Lambrechts AM; Goldman M; Vanherweghem JL
    Clin Nephrol; 1993 Mar; 39(3):158-65. PubMed ID: 8096446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased binding of beta-2-microglobulin to blood cells in dialysis patients treated with high-flux dialyzers compared with low-flux membranes contributed to reduced beta-2-microglobulin concentrations. Results of a cross-over study.
    Traut M; Haufe CC; Eismann U; Deppisch RM; Stein G; Wolf G
    Blood Purif; 2007; 25(5-6):432-40. PubMed ID: 17957097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serum transcortin levels in patients with chronic hemodialysis.
    De Moor P; Faict D; Verberckmoes R
    Ann Biol Clin (Paris); 1985; 43(3):267-9. PubMed ID: 3927790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer surfaces structured with random or aligned electrospun nanofibers to promote the adhesion of blood platelets.
    Wan LS; Xu ZK
    J Biomed Mater Res A; 2009 Apr; 89(1):168-75. PubMed ID: 18431780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of hemodialysis membrane type on parathyroid hormone removal.
    Kudlac H; Fielding AM; Williams AJ
    Miner Electrolyte Metab; 1994; 20(5):245-9. PubMed ID: 7700210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Membrane biocompatibility in dialysis: the role of absorption].
    Chanard J
    Nephrologie; 2003; 24(7):359-65. PubMed ID: 14650747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. beta 2-Microglobulin and other low molecular weight proteins in haemodiafiltrates and in haemofiltrates.
    Montali U; Pilone N; Cioni L; Ronca G
    Int J Tissue React; 1984; 6(1):71-4. PubMed ID: 6370888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatibility of hemodialysis membranes: evaluation in an ovine model.
    Burhop KE; Johnson RJ; Simpson J; Chenoweth DE; Borgia J
    J Lab Clin Med; 1993 Feb; 121(2):276-93. PubMed ID: 8433041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human serum opsonization of orthopedic biomaterial particles: protein-binding and monocyte/macrophage activation in vitro.
    Sun DH; Trindade MC; Nakashima Y; Maloney WJ; Goodman SB; Schurman DJ; Smith RL
    J Biomed Mater Res A; 2003 May; 65(2):290-8. PubMed ID: 12734824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro evaluation of a relationship between human serum- or plasma-material interaction and polymer bulk hydroxyl and surface oxygen content.
    Sawada K; Malchesky PS; Guidubaldi JM; Sueoka A; Shimoyama T
    ASAIO J; 1993; 39(4):910-7. PubMed ID: 8123926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro blood compatibility evaluation of cuprophan and polyacrylonitrile membranes.
    Stefanovic V; Vlahovic P; Kostic S; Mitić-Zlatkovic M
    Nephron; 1998; 79(3):350-1. PubMed ID: 9678440
    [No Abstract]   [Full Text] [Related]  

  • 18. [Comparison of biocompatibility of hemophane, cellulose diacetate and acrilonitile membranes in hemodialysis].
    Germin Petrović D
    Acta Med Croatica; 2004; 58(1):31-6. PubMed ID: 15125391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodialysis membrane biocompatibility: the case of erythropoietin.
    Cheung AK; Hohnholt M; Leypoldt JK; DeSpain M
    Blood Purif; 1991; 9(3):153-63. PubMed ID: 1666293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal anticoagulation strategy in haemodialysis with heparin-coated polyacrylonitrile membrane.
    Lavaud S; Canivet E; Wuillai A; Maheut H; Randoux C; Bonnet JM; Renaux JL; Chanard J
    Nephrol Dial Transplant; 2003 Oct; 18(10):2097-104. PubMed ID: 13679486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.