These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38706445)

  • 1. Denitrifying bioreactors and dissolved phosphorus: Net source or sink?
    Bailon APS; Margenot A; Cooke RAC; Christianson LE
    J Environ Qual; 2024 May; ():. PubMed ID: 38706445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorus removal in denitrifying woodchip bioreactors varies by wood type and water chemistry.
    Sanchez Bustamante-Bailon AP; Margenot A; Cooke RAC; Christianson LE
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):6733-6743. PubMed ID: 34460085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Denitrifying woodchip bioreactor and phosphorus filter pairing to minimize pollution swapping.
    Christianson LE; Lepine C; Sibrell PL; Penn C; Summerfelt ST
    Water Res; 2017 Sep; 121():129-139. PubMed ID: 28525785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrous oxide and methane production and consumption at five full-size denitrifying bioreactors treating subsurface drainage water.
    Brunton AM; Zilles JL; Cooke RA; Christianson LE
    Sci Total Environ; 2024 Apr; 919():170956. PubMed ID: 38365030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paired denitrifying bioreactors with wide orientation for increased drainage flow capacity.
    Maxwell BM; Cooke RA; Christianson LE
    J Environ Manage; 2022 Oct; 319():115768. PubMed ID: 35982568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient removal efficiency in a rice-straw denitrifying bioreactor.
    Liang X; Lin L; Ye Y; Gu J; Wang Z; Xu L; Jin Y; Ru Q; Tian G
    Bioresour Technol; 2015 Dec; 198():746-54. PubMed ID: 26454040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow analysis and hydraulic performance of denitrifying bioreactors under different carbon dosing treatments.
    Moghaddam R; Barkle G; Rivas A; Schipper L
    J Environ Manage; 2023 Feb; 328():116926. PubMed ID: 36470003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of fly ash pellets for phosphorus removal in a laboratory scale denitrifying bioreactor.
    Li S; Cooke RA; Huang X; Christianson L; Bhattarai R
    J Environ Manage; 2018 Feb; 207():269-275. PubMed ID: 29179116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrate and phosphate removal from agricultural subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters.
    Hua G; Salo MW; Schmit CG; Hay CH
    Water Res; 2016 Oct; 102():180-189. PubMed ID: 27344249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of an under-loaded denitrifying bioreactor with biochar amendment.
    Bock EM; Coleman BSL; Easton ZM
    J Environ Manage; 2018 Jul; 217():447-455. PubMed ID: 29627650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Closed depressions and soil phosphorus influence subsurface phosphorus losses in a tile-drained field in Illinois.
    Andino LF; Gentry LE; Fraterrigo JM
    J Environ Qual; 2020 Sep; 49(5):1273-1285. PubMed ID: 33016436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating phosphorus removal dynamics in a denitrifying woodchip bioreactor.
    Perera GN; Rojas DT; Rivas A; Barkle G; Moorhead B; Schipper LA; Craggs R; Hartland A
    Sci Total Environ; 2024 Mar; 917():170478. PubMed ID: 38301780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the concept of control points for dissolved reactive phosphorus losses in subsurface drainage.
    Alves de Oliveira L; Muñoz Ventura A; Preza-Fontes G; Greer KD; Pittelkow CM; Bhattarai R; Christianson R; Christianson L
    J Environ Qual; 2022 Nov; 51(6):1155-1167. PubMed ID: 35946838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of reactive phosphorus treatment by filter materials at the edge of tile-drained agricultural catchments: A global view of the current status and challenges.
    Mendes LRD; Pugliese L; Canga E; Wu S; Heckrath GJ
    J Environ Manage; 2022 Dec; 324():116329. PubMed ID: 36183527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing the Performance of Denitrifying Bioreactors during Simulated Subsurface Drainage Events.
    Bell N; Cooke RA; Olsen T; David MB; Hudson R
    J Environ Qual; 2015 Sep; 44(5):1647-56. PubMed ID: 26436281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applied denitrifying bioreactor cost efficiencies based on empirical construction costs and nitrate removal.
    Maxwell BM; Christianson RD; Arch R; Johnson S; Book R; Christianson LE
    J Environ Manage; 2024 Feb; 352():120054. PubMed ID: 38211432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Holistic Evaluation of Field-Scale Denitrifying Bioreactors as a Basis to Improve Environmental Sustainability.
    Fenton O; Healy MG; Brennan FP; Thornton SF; Lanigan GJ; Ibrahim TG
    J Environ Qual; 2016 May; 45(3):788-95. PubMed ID: 27136143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of denitrifying bioreactors for the removal of atrazine in agricultural drainage water.
    Hassanpour B; Geohring LD; Klein AR; Giri S; Aristilde L; Steenhuis TS
    J Environ Manage; 2019 Jun; 239():48-56. PubMed ID: 30884289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochar fails to enhance nutrient removal in woodchip bioreactor columns following saturation.
    Coleman BSL; Easton ZM; Bock EM
    J Environ Manage; 2019 Feb; 232():490-498. PubMed ID: 30502616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Denitrifying bioreactor clogging potential during wastewater treatment.
    Christianson LE; Lepine C; Sharrer KL; Summerfelt ST
    Water Res; 2016 Nov; 105():147-156. PubMed ID: 27614035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.