These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 38706517)
1. The spike-timing-dependent plasticity of VIP interneurons in motor cortex. McFarlan AR; Guo C; Gomez I; Weinerman C; Liang TA; Sjöström PJ Front Cell Neurosci; 2024; 18():1389094. PubMed ID: 38706517 [TBL] [Abstract][Full Text] [Related]
2. The short-term plasticity of VIP interneurons in motor cortex. McFarlan AR; Gomez I; Chou CYC; Alcolado A; Costa RP; Sjöström PJ Front Synaptic Neurosci; 2024; 16():1433977. PubMed ID: 39267890 [TBL] [Abstract][Full Text] [Related]
3. Vasoactive Intestinal Polypeptide-Immunoreactive Interneurons within Circuits of the Mouse Basolateral Amygdala. Rhomberg T; Rovira-Esteban L; Vikór A; Paradiso E; Kremser C; Nagy-Pál P; Papp OI; Tasan R; Erdélyi F; Szabó G; Ferraguti F; Hájos N J Neurosci; 2018 Aug; 38(31):6983-7003. PubMed ID: 29954847 [TBL] [Abstract][Full Text] [Related]
4. Pharmacological Signature and Target Specificity of Inhibitory Circuits Formed by Martinotti Cells in the Mouse Barrel Cortex. Donato C; Balduino Victorino D; Cabezas C; Aguirre A; Lourenço J; Potier MC; Zorrilla de San Martin J; Bacci A J Neurosci; 2023 Jan; 43(1):14-27. PubMed ID: 36384682 [TBL] [Abstract][Full Text] [Related]
5. Whole-brain mapping of long-range inputs to the VIP-expressing inhibitory neurons in the primary motor cortex. Lee C; Côté SL; Raman N; Chaudhary H; Mercado BC; Chen SX Front Neural Circuits; 2023; 17():1093066. PubMed ID: 37275468 [TBL] [Abstract][Full Text] [Related]
6. Spike-timing-dependent plasticity of neocortical excitatory synapses on inhibitory interneurons depends on target cell type. Lu JT; Li CY; Zhao JP; Poo MM; Zhang XH J Neurosci; 2007 Sep; 27(36):9711-20. PubMed ID: 17804631 [TBL] [Abstract][Full Text] [Related]
7. Disinhibitory Circuitry Gates Associative Synaptic Plasticity in Olfactory Cortex. Canto-Bustos M; Friason FK; Bassi C; Oswald AM J Neurosci; 2022 Apr; 42(14):2942-2950. PubMed ID: 35181596 [TBL] [Abstract][Full Text] [Related]
8. Distinct mechanisms of spike timing-dependent LTD at vertical and horizontal inputs onto L2/3 pyramidal neurons in mouse barrel cortex. Banerjee A; González-Rueda A; Sampaio-Baptista C; Paulsen O; Rodríguez-Moreno A Physiol Rep; 2014; 2(3):e00271. PubMed ID: 24760524 [TBL] [Abstract][Full Text] [Related]
9. Diversity and Connectivity of Layer 5 Somatostatin-Expressing Interneurons in the Mouse Barrel Cortex. Nigro MJ; Hashikawa-Yamasaki Y; Rudy B J Neurosci; 2018 Feb; 38(7):1622-1633. PubMed ID: 29326172 [TBL] [Abstract][Full Text] [Related]
10. Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices. Fino E; Deniau JM; Venance L J Physiol; 2008 Jan; 586(1):265-82. PubMed ID: 17974593 [TBL] [Abstract][Full Text] [Related]
11. Learning-induced plasticity in the barrel cortex is disrupted by inhibition of layer 4 somatostatin-containing interneurons. Dobrzanski G; Lukomska A; Zakrzewska R; Posluszny A; Kanigowski D; Urban-Ciecko J; Liguz-Lecznar M; Kossut M Biochim Biophys Acta Mol Cell Res; 2022 Jan; 1869(1):119146. PubMed ID: 34599984 [TBL] [Abstract][Full Text] [Related]
12. Developmental Switch in Spike Timing-Dependent Plasticity and Cannabinoid-Dependent Reorganization of the Thalamocortical Projection in the Barrel Cortex. Itami C; Huang JY; Yamasaki M; Watanabe M; Lu HC; Kimura F J Neurosci; 2016 Jun; 36(26):7039-54. PubMed ID: 27358460 [TBL] [Abstract][Full Text] [Related]
13. Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage. Sgritta M; Locatelli F; Soda T; Prestori F; D'Angelo EU J Neurosci; 2017 Mar; 37(11):2809-2823. PubMed ID: 28188217 [TBL] [Abstract][Full Text] [Related]
14. Input specificity and dependence of spike timing-dependent plasticity on preceding postsynaptic activity at unitary connections between neocortical layer 2/3 pyramidal cells. Zilberter M; Holmgren C; Shemer I; Silberberg G; Grillner S; Harkany T; Zilberter Y Cereb Cortex; 2009 Oct; 19(10):2308-20. PubMed ID: 19193711 [TBL] [Abstract][Full Text] [Related]
16. Concurrently induced plasticity due to convergence of distinct forms of spike timing-dependent plasticity in the developing barrel cortex. Itami C; Kimura F Eur J Neurosci; 2016 Dec; 44(12):2984-2990. PubMed ID: 27726220 [TBL] [Abstract][Full Text] [Related]
17. Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. Letzkus JJ; Kampa BM; Stuart GJ J Neurosci; 2006 Oct; 26(41):10420-9. PubMed ID: 17035526 [TBL] [Abstract][Full Text] [Related]