These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 38706558)

  • 1. Personalized coronary and myocardial blood flow models incorporating CT perfusion imaging and synthetic vascular trees.
    Menon K; Khan MO; Sexton ZA; Richter J; Nguyen PK; Malik SB; Boyd J; Nieman K; Marsden AL
    Npj Imaging; 2024; 2(1):9. PubMed ID: 38706558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Personalized coronary and myocardial blood flow models incorporating CT perfusion imaging and synthetic vascular trees.
    Menon K; Khan MO; Sexton ZA; Richter J; Nieman K; Marsden AL
    medRxiv; 2023 Aug; ():. PubMed ID: 37645850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myocardial Perfusion Simulation for Coronary Artery Disease: A Coupled Patient-Specific Multiscale Model.
    Papamanolis L; Kim HJ; Jaquet C; Sinclair M; Schaap M; Danad I; van Diemen P; Knaapen P; Najman L; Talbot H; Taylor CA; Vignon-Clementel I
    Ann Biomed Eng; 2021 May; 49(5):1432-1447. PubMed ID: 33263155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral perfusion simulation using realistically generated synthetic trees for healthy and stroke patients.
    Rundfeldt HC; Lee CM; Lee H; Jung KH; Chang H; Kim HJ
    Comput Methods Programs Biomed; 2024 Feb; 244():107956. PubMed ID: 38061114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of TAVR on coronary artery hemodynamics using clinical measurements and image-based patient-specific in silico modeling.
    Garber L; Khodaei S; Maftoon N; Keshavarz-Motamed Z
    Sci Rep; 2023 Jun; 13(1):8948. PubMed ID: 37268642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-growth-based synthetic tree generation and perfusion simulation.
    Kim HJ; Rundfeldt HC; Lee I; Lee S
    Biomech Model Mechanobiol; 2023 Jun; 22(3):1095-1112. PubMed ID: 36869925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative evaluation of regional myocardial perfusion using fast X-ray computed tomography.
    Schmermund A; Bell MR; Lerman LO; Ritman EL; Rumberger JA
    Herz; 1997 Feb; 22(1):29-39. PubMed ID: 9088938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic parameters causing atherosclerosis.
    Wong KKL; Wu J; Liu G; Huang W; Ghista DN
    Med Biol Eng Comput; 2020 Aug; 58(8):1831-1843. PubMed ID: 32519006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomically and physiologically informed computational model of hepatic contrast perfusion for virtual imaging trials.
    Sauer TJ; Abadi E; Segars P; Samei E
    Med Phys; 2022 May; 49(5):2938-2951. PubMed ID: 35195901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibration-free beam hardening correction for myocardial perfusion imaging using CT.
    Levi J; Eck BL; Fahmi R; Wu H; Vembar M; Dhanantwari A; Fares A; Bezerra HG; Wilson DL
    Med Phys; 2019 Apr; 46(4):1648-1662. PubMed ID: 30689216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single photon emission computed tomography for the diagnosis of coronary artery disease: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2010; 10(8):1-64. PubMed ID: 23074411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery.
    Sankaran S; Esmaily Moghadam M; Kahn AM; Tseng EE; Guccione JM; Marsden AL
    Ann Biomed Eng; 2012 Oct; 40(10):2228-42. PubMed ID: 22539149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of contrast agent dispersion on bolus-based MRI myocardial perfusion measurements: A computational fluid dynamics study.
    Martens J; Panzer S; van den Wijngaard J; Siebes M; Schreiber LM
    Magn Reson Med; 2020 Jul; 84(1):467-483. PubMed ID: 31828822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CT Assessment of Myocardial Perfusion and Fractional Flow Reserve.
    Hulten E; Ahmadi A; Blankstein R
    Prog Cardiovasc Dis; 2015; 57(6):623-31. PubMed ID: 25770850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Assessment of Blood Flow Heterogeneity in Peritoneal Dialysis Patients' Cardiac Ventricles.
    Kharche SR; So A; Salerno F; Lee TY; Ellis C; Goldman D; McIntyre CW
    Front Physiol; 2018; 9():511. PubMed ID: 29867555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method.
    Tao Y; Chen GH; Hacker TA; Raval AN; Van Lysel MS; Speidel MA
    Med Phys; 2014 Jul; 41(7):071914. PubMed ID: 24989392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance imaging (MRI) for the assessment of myocardial viability: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2010; 10(15):1-45. PubMed ID: 23074392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Italian Society of Cardiovascular Echography (SIEC) Consensus Conference on the state of the art of contrast echocardiography.
    Ital Heart J; 2004 Apr; 5(4):309-34. PubMed ID: 15185894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Tuning for Parameter Identification and Uncertainty Quantification in Multi-scale Coronary Simulations.
    Tran JS; Schiavazzi DE; Ramachandra AB; Kahn AM; Marsden AL
    Comput Fluids; 2017 Jan; 142():128-138. PubMed ID: 28163340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling coronary flow and myocardial perfusion by integrating a structured-tree coronary flow model and a hyperelastic left ventricle model.
    Wang Y; Yin X
    Comput Methods Programs Biomed; 2024 Jan; 243():107928. PubMed ID: 38000321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.