These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
66 related articles for article (PubMed ID: 3870744)
1. [Adaptation of Rhodopseudomonas palustris to changes in atmospheric conditions]. Viale AA; Wider EA; Batlle AM Rev Argent Microbiol; 1985; 17(2):75-9. PubMed ID: 3870744 [TBL] [Abstract][Full Text] [Related]
2. [Bacteriochlorophyll a synthesis in Rhodopseudomonas palustris]. Viale AA; Lorenti AS; Wider de Xifra EA; del C Battle AM Rev Argent Microbiol; 1980; 12(1):1-9. PubMed ID: 7348313 [TBL] [Abstract][Full Text] [Related]
3. Porphyrin biosynthesis in Rhodopseudomonas palustris--XII. delta-Aminolevulinate synthetase switch-off/on regulation. Viale AA; Wider EA; Batlle AM Int J Biochem; 1987; 19(4):379-83. PubMed ID: 3595986 [TBL] [Abstract][Full Text] [Related]
4. [Effect of light intensity on the biosynthesis of bacteriochlorophylls in Rhodomicrobium vannielii and Rhodopseudomonas palustris]. Lorenti AS; Viale AA Rev Argent Microbiol; 1980; 12(3):105-9. PubMed ID: 7348318 [TBL] [Abstract][Full Text] [Related]
5. [Various properties of delta-aminolevulinate synthetase from Rhodopseudomonas palustris]. Viale AA; Wider EA; Batlle AM Rev Argent Microbiol; 1983; 15(4):233-8. PubMed ID: 6336569 [TBL] [Abstract][Full Text] [Related]
6. Membrane differentiation and assembly of the pigment-protein complexes of the photosynthetic bacterium Rhodopseudomonas capsulata. Dierstein R; Drews G Prog Clin Biol Res; 1982; 102 Pt B():247-56. PubMed ID: 6761686 [No Abstract] [Full Text] [Related]
7. Extracellular 5-aminolevulinic acid production by Escherichia coli containing the Rhodopseudomonas palustris KUGB306 hemA gene. Choi HP; Lee YM; Yun CW; Sung HC J Microbiol Biotechnol; 2008 Jun; 18(6):1136-40. PubMed ID: 18600059 [TBL] [Abstract][Full Text] [Related]
8. The role of ALA-S and ALA-D in regulating porphyrin biosynthesis in a normal and a HEM R+ mutant strain of Saccharomyces cerevisiae. Correa García S; Bermúdez Moretti M; Cardalda C; Rossetti MV; Batlle AM Yeast; 1993 Feb; 9(2):165-73. PubMed ID: 8465603 [TBL] [Abstract][Full Text] [Related]
9. Control of 5-aminolaevulinate synthetase activity in Rhodopseudomonas spheroides. Wider de Xifra EA; Sandy JD; Davies RC; Neuberger A Philos Trans R Soc Lond B Biol Sci; 1976 Feb; 273(924):79-98. PubMed ID: 4844 [TBL] [Abstract][Full Text] [Related]
10. Regulation of vitamin B12 and bacteriochlorophyll biosynthesis in a facultative methylotroph, Protaminobacter ruber. Sato K; Ishida K; Kuno T; Mizuno A; Shimizu S J Nutr Sci Vitaminol (Tokyo); 1981; 27(5):439-47. PubMed ID: 7320769 [TBL] [Abstract][Full Text] [Related]
11. Control of enzyme synthesis during adaptation in synchronously dividing populations of Rhodopseudomonas spheroides. Ferretti JJ; Gray ED Biochem Biophys Res Commun; 1967 Nov; 29(4):501-7. PubMed ID: 16496526 [No Abstract] [Full Text] [Related]
12. EFFECT OF INHIBITORS OF NUCLEIC ACID AND PROTEIN SYNTHESES ON THE INDUCED SYNTHESES OF BACTERIOCHLOROPHYLL AND DELTA-AMINOLEVULINIC ACID SYNTHETASE BY RHODOPSEUDOMONAS SPHEROIDES. HIGUCHI M; GOTO K; FUJIMOTO M; NAMIKI O; KIKUCHI G Biochim Biophys Acta; 1965 Jan; 95():94-110. PubMed ID: 14289040 [No Abstract] [Full Text] [Related]
13. Isolation and characterization of a glycerol auxotroph of Rhodopseudomonas capsulata: effect of lipid synthesis on the synthesis of photosynthetic pigments. Klein NC; Mindich L J Bacteriol; 1976 Oct; 128(1):337-46. PubMed ID: 977539 [TBL] [Abstract][Full Text] [Related]
14. Bacteriochlorophyll and heme synthesis in Rhodopseudomonas spheroides: possible role of heme in regulation of the branched biosynthetic pathway. Lascelles J; Hatch TP J Bacteriol; 1969 May; 98(2):712-20. PubMed ID: 5784220 [TBL] [Abstract][Full Text] [Related]
15. Differentiation of the intracytoplasmic membrane of Rhodopseudomonas palustris induced by variations of oxygen partial pressure or light intensity. Firsow NN; Drews G Arch Microbiol; 1977 Dec; 115(3):299-306. PubMed ID: 603338 [TBL] [Abstract][Full Text] [Related]
16. Aminolaevulinate synthetase of Micrococcus denitrificans. Purification and properties of the enzyme, and the effect of growth conditions on the enzyme activity in cells. Tait GH Biochem J; 1973 Feb; 131(2):389-403. PubMed ID: 4722442 [TBL] [Abstract][Full Text] [Related]
17. Induction of 5-aminolevulinate synthase by activators of steroid biosynthesis. Martini CN; Romero DG; Yanes LL; Vila Mdel C Life Sci; 2007 Jun; 81(1):19-25. PubMed ID: 17537461 [TBL] [Abstract][Full Text] [Related]
18. The puhE gene of Rhodobacter capsulatus is needed for optimal transition from aerobic to photosynthetic growth and encodes a putative negative modulator of bacteriochlorophyll production. Aklujkar M; Prince RC; Beatty JT Arch Biochem Biophys; 2005 May; 437(2):186-98. PubMed ID: 15850558 [TBL] [Abstract][Full Text] [Related]
19. Influence of precursors and inhibitor on the production of extracellular 5-aminolevulinic acid and biomass by Rhodopseudomonas palustris KG31. Saikeur A; Choorit W; Prasertsan P; Kantachote D; Sasaki K Biosci Biotechnol Biochem; 2009 May; 73(5):987-92. PubMed ID: 19420716 [TBL] [Abstract][Full Text] [Related]
20. Green energy from Rhodopseudomonas palustris grown at low to high irradiance values, under fed-batch operational conditions. Carlozzi P; Pintucci C; Piccardi R; Buccioni A; Minieri S; Lambardi M Biotechnol Lett; 2010 Apr; 32(4):477-81. PubMed ID: 20013301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]